|Table of Contents|

An Improved Strategy of Active Semi-supervisionK-means Clustering Algorithm(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2018年02期
Page:
56-
Research Field:
计算机与信息工程
Publishing date:

Info

Title:
An Improved Strategy of Active Semi-supervisionK-means Clustering Algorithm
Author(s):
Lü FengChai BianfangLi WenbinWang Yao
School of Information Engineering,Hebei GEO University,Shijiazhuang 050031,China
Keywords:
active semi-supervised clusteringpairwise constrained clusteringimproved algorithm
PACS:
TP181
DOI:
10.3969/j.issn.1672-1292.2018.02.008
Abstract:
The classic APCKmeans(active pairwise constrained K-means)algorithm constructs the must-link constraint set and the cannot-link constraint set as the supervised information by Semi-Supervised Clustering through the active learning method to improve the accuracy of the results. However,the algorithm may not be assigned to the current optimal problem during the sample assignment process. This paper proposes a method of assigning label samples to APCKmeans algorithm,and proposes an improved APCKmeans_I algorithm to achieve better clustering results with less supervisory information. The improved strategy is applied to PCKmeans(pairwise constrained K-means)algorithm,and PCKmeans_I algorithm is proposed. Experiments on the UCI reference data set show that the performance of the improved algorithm is obviously improved.

References:

[1] BASU S,BANERJEE A,MOONEY R J. Semi-supervised clustering by seeding[C]//Nineteenth International Conference on Machine Learning. San Fransisco,USA:Morgan Kaufmann Publishers Inc,2002:19-26.
[2]WAGSTAFF K,CARDIE C. Clustering with instance-level constraints[C]//Seventeenth International Conference on Machine Learning. Stanford,CA,USA,2000:1103-1110.
[3]王玲,薄列峰,焦李成. 密度敏感的半监督谱聚类[J]. 软件学报,2007,18(10):2412-2422.
WANG L,BO L F,JIAO L C. Density-sensitive semi-supervised spectral clustering[J]. Journal of software,2007,18(10):2412-2422.(in Chinese)
[4]尹学松,胡恩良,陈松灿. 基于成对约束的判别型半监督聚类分析[J]. 软件学报,2008,19(11):2791-2802.
YIN X S,HU E L,CHEN S C. Discriminative semi-supervised clustering analysis with pairwise constraints[J]. Journal of software,2008,19(11):2791-2802.(in Chinese)
[5]肖宇,于剑. 基于近邻传播算法的半监督聚类[J]. 软件学报,2008,19(11):2803-2813.
XIAO Y,YU J. Semi-supervised clustering based on affinity propagation algorithm[J]. Journal of software,2008,19(11):2803-2813.(in Chinese)
[6]方玲,陈松灿. 结合特征偏好的半监督聚类学习[J]. 计算机科学与探索,2015,9(1):105-111.
FANG L,CHEN S C. Semi-supervised clustering learning combined with feature preferences[J]. Journal of frontiers of computer science and technology,2015,9(1):105-111.(in Chinese)
[7]张俊溪,吴晓军,蒋江红. 复杂分布数据的半监督阶段聚类[J]. 计算机科学与探索,2016,10(7):1003-1009.
ZHANG J X,WU X J,JIANG J H. Semi-supervised stage clustering for complex distribution data[J]. Journal of frontiers of computer science and technology,2015,10(7):1003-1009.(in Chinese)
[8]高莹,刘大有,齐红,等. 一种半监督K均值多关系数据聚类算法[J]. 软件学报,2008,19(11):2814-2821.
GAO Y,LIU D Y,QI H,et al. Semi-supervised K-means clustering algorithm for multi-type relational data[J]. Journal of software,2008,19(11):2814-2821.(in Chinese)
[9]BASU S,BANERJEE A,MOONEY R J. Active semi-supervision for pairwise constrained clustering[C]//Proceedings of the SIAM International Conference on Data Mining. Lake Buena Vista,FL,2004:333-344.
[10]XIONG S,AZIMI J,FERN X Z. Active learning of constraints for semi-supervised clustering[J]. IEEE transactions on knowledge and data engineering,2013,26(1):43-54.
[11]GREENE D,CUNNINGHAM P. Constraint selection by committee:an ensemble approach to identifying informative constraints for semi-supervised clustering[M]//Machine Learning:ECML 2007. Berlin Heidelberg:Springer-Verlag,2007:140-151.
[12]HUANG R,LAM W. Semi-supervised document clustering via active learning with pairwise constraints[C]//IEEE International Conference on Data Mining. Omaha,Nebraska,USA:IEEE,2007:517-522.
[13]MALLAPRAGADA P K,JIN R,JAIN A K. Active query selection for semi-supervised clustering[C]//International Conference on Pattern Recognition. Anchorage,AK,USA:IEEE,2008:1-4.
[14]XU Q,DESJARDINS M,WAGSTAFF K L. Active constrained clustering by examining spectral eigenvectors[C]//International Conference on Discovery Science. Berlin Heidelberg:Springer-Verlag,2005:294-307.
[15]WU M R,SCHOLKOPF B. A local learning approach for clustering[C]//Proceedings of the Conference on Neural Information Processing Systems. Cambridge,MA,USA:MIT Press,2006:1529-1536.
[16]ASUNCION A,NEWMAN D. UCI machine learning repository[EB/OL][2014-02-18]. http://www.ics.uci.edu/~mlearn/MLRepository.html.

Memo

Memo:
-
Last Update: 2018-06-30