[1] 范荣双,陈洋,徐启恒,等. 基于深度学习的高分辨率遥感影像建筑物提取方法[J]. 测绘学报,2019,48(1):34-41.
FAN R S,CHEN Y,XU Q H,et al. A high-resolution remote sensing image building extraction method based on deep learning[J]. Acta geodaetica et cartographica sinica,2019,48(1):34-41.(in Chinese)
[2]李红,刘芳,杨淑媛,等. 基于深度支撑值学习网络的遥感图像融合[J]. 计算机学报,2016,39(8):1583-1596.
LI H,LIU F,YANG S Y,et al. Remote sensing image fusion based on deep support value learning networks[J]. Chinese journal of computers,2016,39(8):1583-1596.(in Chinese)
[3]QIN Q M,CHEN S J,WANG W J,et al. The building recognition of high resolution satellite remote sensing image based on wavelet analysis[C]//2005 International Conference on Machine Learning and Cybernetics. Guangzhou,China:IEEE,2005,7:4533-4538.
[4]ALI G,ABEDELKARIM J. Autonomous building detection using edge properties and image color invariants[J]. Buildings,2018,8(5):65-75.
[5]WANG L,XU Y,LI Y. A Voxel-based 3D building detection algorithm for airborne LIDAR point clouds[J]. Journal of the Indian society of remote sensing,2019,47(2):349-358.
[6]KIM Y,LEE K,CHOI K,et al. Building recognition for augmented reality based navigation system[C]//The Sixth IEEE International Conference on Computer and Information Technology(CIT’06). Bhubaneswar,India:IEEE,2006:131-131.
[7]KRIZHEVSKY A,SUTSKEVER I,HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in neural information processing systems,2012,25(2):1-9.
[8]焦李成,杨淑媛,刘芳,等. 神经网络70年:回顾与展望[J]. 计算机学报,2016,39(8):1697-1716.
JIAO L C,YANG S Y,LIU F,et al. Seventy years beyond neural networks:retrospect and prospect[J]. Chinese journal of computers,2016,39(8):1697-1716.(in Chinese)
[9]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251.
ZHOU F Y,JIN L P,DONG J. Review of convolutional neural network[J]. Chinese journal of computers,2017,40(6):1229-1251.(in Chinese)
[10]周健航,杨绪兵,张福全,等. 马氏度量下局部化广义特征值最接近支持向量机[J]. 南京师大学报(自然科学版),2018,41(4):65-71.
ZHOU J H,YANG X B,ZHANG F Q,et.al. Localized GEPSVM based on mahalanobis metric[J]. Journal of Nanjing normal university(natural science edition),2018,41(4):65-71.(in Chinese)
[11]寇振宇,杨绪兵,张福全,等. L1范数最大间隔分类器设计[J]. 南京师大学报(自然科学版),2018,41(4):59-64.
KOU Z Y,YANG X B,ZHANG F Q,et.al. Design of L1 norm maximum margin classifier[J]. Journal of Nanjing normal university(natural science edition),2018,41(4):59-64.(in Chinese)
[12]曲延云,郑南宁,李翠华,等. 基于支持向量机的显著性建筑物检测[J]. 计算机研究与发展,2007,44(1):141-147.
QU Y Y,ZHENG N N,LI C H,et al. Salient building detection based on SVM[J]. Journal of computer research and development,2007,44(1):141-147.(in Chinese)
[13]SHAHZAD M,MAURER M,FRAUNDORFER F,et al. Buildings detection in VHR SAR images using fully convolution neural networks[J]. IEEE transactions on geoscience and remote sensing,2018,57(2):1-17.
[14]ZHAO K,KANG J,JUNG J,et al. Building extraction from satellite images using mask R-CNN with building boundary regularization[C]//CVPR Workshops. Salt Lake City,United States,2018:247-251.
[15]TERMRITTHIKUN C,KANPRACHAR S,MUNEESAWANG P. NU-LiteNet:mobile landmark recognition using convolutional neural networks[EB/OL]. [2019-10-02] http://arxiv.org/abs/1810.01074.
[16]CHOI S,LEE J,LEE K,et al. A 9.02 mW CNN stereo based real time 3D hand gesture recognition processor for smart mobile devices[C]//2018 IEEE International Solid State Circuits Conference-(ISSCC). San Francisco,United States:IEEE,2018:220-222.
[17]HA K D,HYUN L S,CHEOL S B. MUNet:Macro unit based convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City,United States:2018:1668-1676.
[18]HOWARD A G,ZHU M,CHEN B,et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[EB/OL]. arXiv preprint arXiv:1704.04861,2017.
[19]IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL]. arXiv preprint arXiv:1502.03167,2015.
[20]RUMELHART D E,HINTON G E,WILLIAMS R J. Learning representations by back-propagating errors[J]. Cognitive modeling,1988,5(3):1.
[21]HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL]. arXiv preprint arXiv:1207.0580,2012.
[22]ZEILER M D,FERGUS R. Visualizing and understanding convolutional networks[C]//European Conference On Computer Vision. Zurich,Switzerland:Springer,Cham,2014:818-833.
[23]YOSINSKI J,CLUNE J,BENGIO Y,et al. How transferable are features in deep neural networks?[C]//Advances in Neural Information Processing Systems. Vancouver,British Columbia,Canada,2014:3320-3328.
[24]SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. arXiv preprint arXiv:1409.1556,2014.
[25]SZEGEDY C,LIU W,JIA Y,et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston,United States,2015:1-9.