[1] 何玲,黎加厚. 促进学生深度学习[J]. 现代教学,2005(5):29-30.
[2]杨宗凯. 数据驱动个性化学习[N]. 中国教育报,2018-11-01(007).
[3]侯明良. MOOC讨论区数据挖掘与应用[D]. 济南:山东大学,2016.
[4]AU C H,LAM K C,FUNG W S,et al. Using animation to develop a MOOC on information security[C]//IEEE International Conference on Industrial Engineering and Engineering Management.
[5]史文祥. 基于DT-BM的学习者主题行为模型研究[D]. 武汉:华中师范大学,2017.
[6]李敏. 虚拟学习社区成员互动的知识建构效果分析[D]. 扬州:扬州大学,2015.
[7]张平霞. 基于文本挖掘的MOOC讨论区学习评价研究[D]. 重庆:重庆师范大学,2018.
[8]VALENTI S,NEFF E,CUCCHIARELLI A. An overview of current research on automated essay grading[J]. Journal of Information Technology Education,2003,2:319-330.
[9]谭冬晨. 主观题评分算法模型研究[D]. 成都:电子科技大学,2011.
[10]王漪. 文本挖掘技术的研究及其在教学平台中的应用[D]. 北京:北京交通大学,2014.
[11]SHEHAB A,ELHOSENY M,HASSANIEN A E. A hybrid scheme for automated essay grading based on LVQ and NLP techniques[C]//2017 13th International Computer Engineering Conference(ICENCO). Cairo:IEEE,2016:65-70.
[12]RAMALINGAM V V,PANDIAN A,CHETRY P,et al. Automated essay grading using machine learning algorithm[C]//2018 10th National Conference on Mathematical Techniques and its Applications(NCMTA). Kattankulathur,2018.
[13]LIU M,WANG Y Q,XU W W,et al. Automated scoring of Chinese engineering students’ english essays[J]. International Journal of Distance Education Technoloies(IJDET),2017,15(1):52-68.
[14]钟将,张淑芳,郭卫丽,等. 主题特征格分析:一种用户生成文本质量评估方法[J]. 电子学报,2018,46(9):2201-2206.
[15]靳健,季平. 用于在线产品评论质量分析的Co-training算法[J]. 上海大学学报(自然科学版),2014,20(3):289-295.
[16]王洪伟,孟园. 在线评论质量有用特征识别:基于GBDT特征贡献度方法[J]. 中文信息学报,2017,31(3):109-117.
[17]聂卉. 基于内容分析的用户评论质量的评价与预测[J]. 图书情报工作,2014,58(13):83-89.
[18]张艳丰,李贺,彭丽徽,等. 基于模糊神经网络的在线评论效用分类过滤模型研究[J]. 情报科学,2017,35(5):94-99,131.
[19]王忠群,皇苏斌,修宇,等. 基于领域专家和商品特征概念树的在线商品评论深刻性度量[J]. 现代图书情报技术,2015(9):17-25.
[20]AIKA Q,KARIM B S S,RAM G R,et al. A concept-level approach to the analysis of online review helpfulness[J]. Computers in Human Behavior,2016,58:75-81.
[21]NIKOLAOS K,ELENA G B,SALVADOR S A. Evaluating content quality and helpfulness of online product reviews:the interplay of review helpfulness vs. review content[J]. Electronic Commerce Research and Applications,2012,11(3):205-217.
[22]黄传河,杜瑞颖,张沪寅,等. 网络安全[M]. 武汉:武汉大学出版社,2004.
[23]龚越,罗小芹,王殿海,等. 基于梯度提升回归树的城市道路行程时间预测[J]. 浙江大学学报(工学版),2018,52(3):453-460.