|Table of Contents|

Analysis of Nitrobenzoic Acid Isomers and Its Applicationin Wastewater Pretreatment(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年01期
Page:
49-56
Research Field:
化学工程与技术
Publishing date:

Info

Title:
Analysis of Nitrobenzoic Acid Isomers and Its Applicationin Wastewater Pretreatment
Author(s):
Feng Changsheng12Xiong Jianxi12Zhang Zheng12Jiang Caiyun34Wang Yuping12
(1.School of Chemistry and Materials Science,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control,Nanjing Normal University,Nanjing 210023,China)(3.Department of Engineering and T
Keywords:
nitrobenzoic acidisomerhigh performance liquid chromatographyquantitative analysiswastewater
PACS:
O661.1
DOI:
10.3969/j.issn.1672-1292.2020.01.008
Abstract:
The production and refining of m-nitrobenzoic acid will produce a large amount of wastewater with high concentration of nitrobenzoic acid isomers. In order to select and optimize the technological conditions for wastewater pretreatment,it is necessary to separate and detect various nitrobenzoic acids in samples. In this study,a method for the separation and detection of nitrobenzoic acid isomers by high performance liquid chromatography is established. XDB-C18 column is used,methanol-water(pH=3.0)(volume ratio 35:65)is used as mobile phase,and the ultraviolet detection wavelength is 267 nm. Effects of composition and volume ratio,pH value and flow rate of mobile phase on the separation degree of nitrobenzoic acid isomers are investigated. The results show that the linear relationship among o-,m-,p-nitrobenzoic acid is good in the range of 12.14-194.0 mg/L,13.78-220.40 mg/L and 6.45-103.20 mg/L,respectively. The correlation coefficient R2 is greater than 0.999 5,and the relative standard deviation is less than 1.04%. The analytical method can be used to provide an analysis for the pretreatment of refined wastewater of m-nitrobenzoic acid.

References:

[1] WANG G H,LIU Q L,GUO M,et al. m-Nitrobenzoic acid synthesis conditions optimization[J]. Applied Chemical Industry,2013(42):1105-1106.
[2]DIAN D D,HONG Y B,CHANG L A,et al. Ultrasensitive detection of Sudan I in food samples by a quantitative immunochromatographic assay[J]. Food Chemistry,2019(277):595-603.
[3]YAN Z Q,QIN H S,REN J S,et al. Photocontrolled multidirectional differentiation of mesenchymal stem cells on an upconversion substrate[J]. Angewandte Chemie International Edition,2018(57):11182-11187.
[4]DUAN X R,YANG Y L,WANG S H,et al. Interaction between polymorphisms in cell-cycle genes and environmental factors in regulating cholinesterase activity in people with exposure to omethoate[J]. Royal Society Open Science,2018,5(5):172357.
[5]JAIN S,MANIMUTHU M S,SHARMA N,et al. High prevalence of non-tuberculous mycobacterial disease among non-HIV infected individuals in a TB endemic country experience from a tertiary center in Delhi,India[J]. Pathogens and Global Health,2014,108(2):118-122.
[6]WANG X R,TANG L,LI Y,et al. The photosensitization based on host-guest interactions in a layered double hydroxide imaging[J]. Imaging Science and Photochemistry,2017,35(3):307-315.
[7]LIN Q,GUAN X W,SONG S S,et al. A novel supramolecular polymer π-gel based on bis-naphthalimide functionalized-pillar arene for fluorescence detection and separation of aromatic acid isomers[J]. Polymer Chemistry,20191(10):253-259.
[8]陈勇,袁倬斌. 邻、间、对-硝基苯甲酸的毛细管区带电泳分离、紫外检测的研究[J]. 应用基础与工程科学学报,1995,3(3):12-15.
[9]颜廷良. 工业废水中苯胺、硝基苯含量的测定[J]. 辽宁化工,2011,40(11):1220-1222.
[10]张春雷,曹秋,颜慧. 毛细管气相色谱柱测定水中12种硝基苯类化合物[J]. 环境科学与管理,2010,35(4):149-151.
[11]何立志,罗娟,罗蓉. 毛细管柱-气相色谱法测定水样中硝基苯类化合物残留量[J]. 理化检验(化学分册),2010,46(12):1438-1440,1446.
[12]李利荣,魏恩棋,王艳丽,等. 固相萃取气相色谱法测定水中15种硝基苯类化合物[J]. 环境监测管理与技术,2012,24(3):60-63,68.
[13]卢明伟. 固相萃取-高效液相色谱法测定水样中硝基苯类化合物[J]. 理化检验(化学分册),2009,45(4):425-427,430.
[14]乌云,宝凤荣,邹积峰,等. 薄层色谱法测定丰产素邻硝基苯酸钠、对硝基苯酸钠、5-硝基愈创木酸纳[J]. 化学世界,2000,41(9):490-492.
[15]邵明武,林君,邱雪梅,等. 多元回归-紫外分光光度法同时测定硝基苯类化合物[J]. 中国环境监测,2000,16(1):30-32.
[16]尹莉莉,张万峰. 还原-偶氮光度法测定水中硝基苯的方法探讨[J]. 北方环境,2005,30(1):80,61.
[17]高从,杨宁,黄力. 库仑滴定法测定水杨酸醇溶液中水杨酸的含量[J]. 中国医院药学杂志,2014,34(6):494-496.
[18]ADRIANA D M,LUCAS C,FERNANDA M D,et al. Analysis of chlorogenic acids isomers and caffeic acid in 89 herbal infusions(tea)[J]. Journal of Food Composition and Analysis,2018(73):76-82.
[19]SREENIVASULU J,VENKATA R P,SAMPATH K R G,et al. Development of novel RP-HPLC method for separation and estimation of critical geometric isomer and other related impurities of tafluprost drug substance and identification of major degradation compounds by using LC-MS[J]. Journal of Chromatographic Science,2016,8(8):1397-1407.
[20]SEKI K I,NOYA Y,MIKAMI Y,et al. Isolation and identification of new vasodilative substances in diesel exhaust particles[J]. Environmental Science and Pollution Research,2010,17(3):717-723.
[21]王小芳,金铨,任韧. 高效液相色谱法同时测定化妆品中的8种硝基苯类化合物[J]. 中国卫生检验杂志,2014,24(8):1094-1097.
[22]仲鑫,于水利,崔崇威,等. 固相萃取-高效液相色谱法测定水中9种苯环类有机酸[J]. 中国给水排水,2016,30(18):107-112.
[23]梁奕昌,义志忠,蔡志虹,等. 硝基甲苯与硝基苯甲酸异构体的高效液相色谱法分析[J]. 色谱,1999,17(4):397-398.
[24]MING X,HAN S Y,QI Z C,et al. Chromatographic retention prediction and octanol-water partition coefficient determination of monobasic weak acidic compounds in ion-suppression reversed-phase liquid chromatography using acids as ion-suppressors[J]. Talanta,2009,79(3):752-761.
[25]GARDNER M S,VOYKSNER R D,HANEY C A. Analysis of pesticides by LC-electrospray-MS with postcolumn removal of nonvolatile buffers[J]. Analytical Chemistry,2009,72(19):4659-4666.
[26]狄静波,董晓琪,陈平,等. 改性沸石处理酚类有机废水[J]. 哈尔滨商业大学学报(自然科学版),2018,34(4):423-426,446.
[27]曾泳淮. 分析化学[M]. 3版. 北京:高等教育出版社,2010.
[28]马小利. 四氟苯甲酸反相高效液相色谱法分离条件的探索[J]. 广州化工,2010,38(7):149-150.
[29]龚时琼. 高效液相色谱分析中异常峰的分析与处理[J]. 实验技术与管理,2010,27(6):37-39,42.
[30]AMIRHASSAN A,MASOUD M,SHADI D. A nanohybrid composed of polyoxotungstate and graphene oxide for dispersive micro solid-phase extraction of non-steroidal anti-inflammatory drugs prior to their quantitation by HPLC[J]. Microchimica Acta,2019(186):534.

Memo

Memo:
-
Last Update: 2020-03-15