[1] ABRAR H A,SHUAI B,ZHEN Z,et al. Multimodal recurrent neural networks with information transfer layers for indoor scene labeling[J]. IEEE Transactions on Multimedia,2018,20(7):1656-1671.
[2]BARTSCHAT A,ALLGEIER S,BOHN S,et al. Digital image processing and deep neural networks in ophthalmology-current trends[J]. Klinische Monatsbl?tter Für Augenheilkunde,2019,236(12):1399-1406.
[3]CHO J H,PARK C G. Multiple feature aggregation using convolutional neural networks for SAR image-based automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters,2018,15(12):1882-1886.
[4]HINDMARSH J L,ROSE R M. A model of the nerve impulse using two first-order differential equations[J]. Nature,1982,296(5853):162-164.
[5]MORRIS C,LECAR H. Voltage oscillations in the barnacle giant muscle fiber[J]. Biophysical Journal,1981,35(1):193-213.
[6]HODGKIN A L,HUXLEY A F. Current carried by sodium and potassium ions through the membrane of the giant axon of Loligo[J]. Journal of Physiology,1952,116(4):449-72.
[7]FITZHUGH R. Threshold and plateau in the Hodgkin-Huxley nerve equations[J]. Journal General Physiology,1960,43(5):867-896.
[8]REHAN M,HONG K S. Robust synchronization of delayed chaotic FitzHugh-Nagumo neurons under external electrical stimulation[J]. Computational and Mathematical Methods in Medicine,2012:1-11.
[9]FAN D J,HONG L. Hopf bifurcation analysis in a synaptically coupled FHN neuron model with delays[J]. Communications in Nonlinear Science Numerical Simulation,2010,15(7):1873-1886.
[10]ZHANG Y,XIANG L,ZHOU J. Dynamical behaviors in coupled FitzHugh-Nagumo neural systems with time delays[C]//Chinese Intelligent Systems Conference 2016,Singapore,2016:289-300.
[11]YOONSIK S,PHIL H. The chaotic dynamics and multistability of two coupled FitzHugh-Nagumo model neurons[J]. Adaptive Behavior,2018,26(4):165-176.
[12]BAO H B,PARK J H,CAO J D. Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay[J]. IEEE Neural Networks and Learning Systems,2016,27(1):190-201.
[13]ZHANG J H,LIAO X F. Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse[J]. Aeu International Journal of Electronics and Communications,2017,75:82-90.
[14]ZHANG J H,LIAO X F. Effects of initial conditions on the synchronization of the coupled memristor neural circuits[J]. Nonlinear Dynamics,2019,95:1269-1282.
[15]BAO H,LIU W B,CHEN M. Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit[J]. Nonlinear Dynamics,2019,96:1879-1894.
[16]CHEN M,QI J W,XU Q,et al. Quasi-period,periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit[J]. AEU-International Journal of Electronics and Communications,2019,110:152840.
[17]WEI W. Synchronization of coupled chaotic Hindmarsh Rose neurons:an adaptive approach[J]. Chinese Physics B,2015,24(10):97-104.
[18]SHE W Q,MA M H. Tracking synchronization of networked lagrangian systems via impulsive control and its applications[J]. Journal of Systems Science and Complexity,2019,32:1093-1103.
[19]OUANNAS A,BENDOUKHA S,VOLOS C,et al. Synchronization of fractional hyperchaotic rabinovich systems via linear and nonlinear control with an application to secure communications[J]. International Journal of Control Automation and Systems,2019,17(9):2211-2219.
[20]AL-SHARGIE F,TANG T B,KIGUCHI M. Stress assessment based on decision fusion of EEG and fNIRS signals[J]. IEEE Access,2017,5:19889-19896.
[21]SUN X J,LI G F. Synchronization transitions induced by partial time delay in a excitatory-inhibitory coupled neuronal network[J]. Nonlinear Dynamics,2017,89(4):2509-2520.
[22]RIGATOS G. Robust synchronization of coupled neural oscillators using the derivative-free nonlinear Kalman Filter[J]. Cognitive Neurodynamics,2014,8(6):465-478.
[23]YU H T,WANG J,DENG B,et al. Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation[J]. Communications in Nonlinear Science and Numerical Simulation,2012,17(3):1344-1354.
[24]YANG C C,LIN C L. Robust adaptive sliding mode control for synchronization of space-clamped FitzHugh-Nagumo neurons[J]. Nonlinear Dynamics,2012,69(4):2089-2096.
[25]CHEN S,LIM C,SHI P,et al. Synchronization control for reaction-diffusion FitzHugh-Nagumo systems with spatial sampled-data[J]. Automatica,2018,93:352-362.
[26]IBRAHIM M M,JUNG H. Complex synchronization of a ring-structured network of FitzHugh-Nagumo neurons with single- and dual-state gap junctions under ionic gates and external electrical disturbance[J]. IEEE Access,2019,7:57894-57906.
[27]JóZSEF K T,JáNOS F B,LEVENTE K,et al. Fractional order PID-type feedback in fixed point transformation-based adaptive control of the FitzHugh-Nagumo neuron model with time-delay[J]. IFAC-Papersonline,2018,51(4):906-911.
[28]PLOTNIKOV S A,LEHNERT J,FRADKOV A L,et al. Adaptive control of synchronization in delay-coupled heterogeneous networks of FitzHugh-Nagumo nodes[J]. International Journal of Bifurcation and Chaos,2016,26(4):165008.
[29]CHEN M,FENG Y,BAO H,et al. State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium[J]. Chaos’ Solitons and Fractals,2018,115:313-324.
[30]BAO H,CAO J. Finite-time generalized synchronization of nonidentical delayed chaotic systems[J]. Nonlinear Analysis:Modeling and Control,2016,21(3):306-324.