|Table of Contents|

Research on Optimal Configuration of Distributed Power Supplyin Distribution Network Based on Adaptive Particle(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年02期
Page:
15-24
Research Field:
电气工程
Publishing date:

Info

Title:
Research on Optimal Configuration of Distributed Power Supplyin Distribution Network Based on Adaptive Particle
Author(s):
Zhang HangMa GangZhong Zetian
School of NARI Electrical and Automation,Nanjing Normal University,Nanjing 210023,China
Keywords:
distributed power supplypower supply reliabilityoptimized configurationadaptive particle swarm optimization
PACS:
TM727
DOI:
10.3969/j.issn.1672-1292.2020.02.003
Abstract:
Aiming at the problems of voltage over-limit and power quality degradation caused by distributed power supply distribution network,a distributed power supply optimization configuration method for distribution network with adaptive characteristics is proposed in this paper. The mathematical model of photovoltaic and wind power is established to analyze its power output characteristics. A distributed power optimization configuration model for distribution network is constructed considering the three factors of distributed power generation:cost,environmental cost and active network loss. For the optimal configuration model of multi-objective function and multi-constraint condition,the adaptive particle swarm optimization algorithm is applied to realize adaptive adjustment of learning factor and inertia weight to improve the optimization performance of the algorithm,thus obtaining the best Location and capacity of distributed power. Finally,the IEEE33 node power distribution system is taken as an example for simulation verification. The results show that the proposed adaptive particle swarm optimization algorithm can achieve better power supply reliability and economical requirements than the traditional particle swarm optimization algorithm and chaotic particle swarm optimization algorithm.

References:

[1] 祁欢欢,荆平,戴朝波,等. 分布式电源对配电网保护的影响及保护配置分析[J]. 智能电网,2015,3(1):8-16.
[2]曹立平. 配电网规划中分布式电源的优化配置[D]. 重庆:重庆大学,2013.
[3]李登峰,谢开贵,胡博,等. 基于净效益最大化的微电网电源优化配置[J]. 电力系统保护与控制,2013,41(20):20-26.
[4]逯明昊. 基于电压质量分析的分布式电源优化配置研究[D]. 徐州:中国矿业大学,2018.
[5]芦火青. 计及电能质量的分布式电源选址定容优化配置研究[D]. 北京:华北电力大学(北京),2016.
[6]邵珂,蒋铁铮. 基于细菌菌落优化算法的分布式电源优化配置[J]. 电力学报,2014,21(3):201-205.
[7]马冬宝,张鑫,辛义. 基于遗传算法的分布式电源的优化配置[J]. 数字技术与应用,2015,6(7):131-133.
[8]周勇,陈家俊,姜飞,等. 基于改进萤火虫算法的分布式电源优化配置研究[J]. 现代电力,2014,31(5):54-58.
[9]徐满意,代祖华,王济深. 粒子群算法改进策略研究[J]. 甘肃科技,2013,29(6):41-44.
[10]王莉荣,祁云嵩. 基于函数最优解问题的粒子群算法改进[J]. 计算机技术与发展,2013,23(2):49-51,56.
[11]吴辰斌,李海明,刘栋,等. 一种改进型粒子群优化算法在电力系统经济负荷分配中的应用[J]. 电力系统保护与控制,2016,44(10):44-48.
[12]孙航,肖海伟,李晓辉,等. 光伏电池模型综述[J]. 电源技术,2016,40(3):743-745.
[13]常虹,吴伟强,张宇昉,等. 基于MWorks的定速风力发电系统建模与仿真研究[J]. 机械工程师,2018,46(7):17-20.
[14]陈春泉,殷豪,陈清泉. 分布式电源优化配置研究现状与展望[J]. 广东电力,2013,26(3):45-49.
[15]董君. 层次分析法权重计算方法分析及其应用研究[J]. 科技资讯,2016,13(29):218,220.
[16]陈祎熙,许洁,徐谷超,等. 基于粒子群算法的并网风电场最大接入容量研究[J]. 可再生能源,2017,35(9):1347-1351.
[17]吴富杰,苏小林,阎晓霞,等. 基于多目标的主动配电网有功无功协调优化[J]. 自动化技术与应用,2015,34(11):59-65.
[18]杜欣慧,卢小茜,薛英男,等. 基于 LD-SAPSO 的分布式电源选址和定容[J]. 电测与仪表,2015,52(7):118-122.
[19]ARASOMWAN M A,ADEWUMI A O. On the performance of linear decreasing inertia weight particle swarm optimization for global optimization[J]. Scientific World Journal,2013:1-12.
[20]XU X L,RONG H Z,TROVATI M,et al. CS-PSO:chaotic particle swarm optimization algorithm for solving combinatorial optimization problems[J]. Soft Computing,2016:1-13.

Memo

Memo:
-
Last Update: 2020-05-15