|Table of Contents|

Fault Identification Method of Distribution Cable Based on Time-FrequencyDomain Features Extracted by ReliefF and Random Forest Algorithm(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年02期
Page:
44-51
Research Field:
电气工程
Publishing date:

Info

Title:
Fault Identification Method of Distribution Cable Based on Time-FrequencyDomain Features Extracted by ReliefF and Random Forest Algorithm
Author(s):
Wang Hui1Chen Jianing2Jin Xue1Feng Shuang2
(1.Nari Technology Co.,Ltd.,Nanjing 211106,China)(2.School of Electrical Engineering,Southeast University,Nanjing 210096,China)
Keywords:
cable of distribution networkshort-circuit fault identificationtime-frequency domain featureReliefFrandom forest
PACS:
TM726
DOI:
10.3969/j.issn.1672-1292.2020.02.007
Abstract:
This paper proposes a fault identification method of distribution cable based on time-frequency domain features extracted by ReliefF and random forest algorithm. 23 fault-sensitive features in time and frequency domain are constructed with bases of the zero sequence voltage,which are then selected with RefiefF method to obtain the subset of features with strong ability to identify the types of fault. The subset of features serves as the input of random forest to train the model identifying the type of short circuit fault. Compared with the method utilizing single feature,the proposed method exploits the potential of data and is more robust. Besides,because of the elimination of irrelative features,the efficiency of the method is improved. The simulation is carried out in Matlab and compared with decision tree,KNN and SVM algorithms. The result demonstrates the feasibility and high accuracy of the proposed method.

References:

[1] 王成山,李鹏,于浩. 智能配电网的新形态及其灵活性特征分析与应用[J]. 电力系统自动化,2018,42(10):13-21.
[2]姜楠,王琦,王恩荣,等. 分布式光伏电源接入对配电网可靠性的影响研究[J]. 南京师范大学学报(工程技术版),2016,16(2):1-9.
[3]方毅,薛永端,宋华茂,等. 谐振接地系统高阻接地故障暂态能量分析与选线[J]. 中国电机工程学报,2018,38(19):5636-5645,5921.
[4]张姝. 配电网弱故障接地保护与定位方法研究[D]. 成都:西南交通大学,2018.
[5]吴京. 基于模分量小波能量谱的电缆故障识别方法研究[D]. 西安:西安科技大学,2014.
[6]DAS B. Fuzzy logic-based fault-type identification in unbalanced radial power distribution system[J]. IEEE Transactions on Power Delivery,2006,21(1):278-285.
[7]李小薇. 基于IPSO-SVM的电缆故障识别[D]. 西安:西安科技大学,2014.
[8]杨春宇. 电力电缆故障分析与诊断技术的研究[D]. 大连:大连理工大学,2013.
[9]孙萌. 基于小波奇异熵的配电网电缆接地故障研究[D]. 西安:西安理工大学,2017.
[10]苏立. 基于HHT变换和FOA_LSSVM的电缆故障诊断[J]. 计算机与现代化,2017(9):96-101,105.
[11]何清,李宁,罗文娟,等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能,2014,27(4):327-336.
[12]JENKE R,PEER A,BUSS M. Feature extraction and selection for emotion recognition from EEG[J]. IEEE Transactions on Affective Computing,2014,5(3):327-339.
[13]何涛,胡洁,夏鹏,等. 基于ReliefF算法与遗传算法的肌电信号特征选择[J]. 上海交通大学学报,2016,50(2):204-208.
[14]SABAHI F,AHMAD M O,SWAMY M N S. Perceptual image hashing using random forest for content-based image retrieval[C]//2018 16th IEEE International New Circuits and Systems Conference(NEWCAS). Montreal,Canada:IEEE,2018:348-351.
[15]彭徵. 基于随机森林的文本分类并行化研究[D]. 湘潭:湘潭大学,2018.

Memo

Memo:
-
Last Update: 2020-05-15