|Table of Contents|

An Automatic Extraction Algorithm for Terraced FieldsBased on UAV High Precision DEM Data(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年02期
Page:
59-65
Research Field:
测绘科学与技术
Publishing date:

Info

Title:
An Automatic Extraction Algorithm for Terraced FieldsBased on UAV High Precision DEM Data
Author(s):
Zhao Fei123Xiong Liyang123Yao Jin4Fang Xuan1235Dai Wen123Tang Guoan123
(1.Key Laboratory of Virtual Geographic Environment of Ministry of Education,Nanjing Normal University,Nanjing 210023,China)(2.School of Geography,Nanjing Normal University,Nanjing 210023,China)(3.Jiangsu Center for Collaborative Innovation in Geographi
Keywords:
DEMterraced extractionhigh precision DEM of UAV
PACS:
S284
DOI:
10.3969/j.issn.1672-1292.2020.02.009
Abstract:
This paper proposes an automatic extraction algorithm for terraced fields based on DEM slope characteristics. Firstly,one-meter resolution DEM is obtained with the basis of UAV aerial survey technology,and slope is calculated on this basis. Meanwhile,terrace line is located in the maximum area of slope digital terrain model. Secondly,the slope flow simulation algorithm is used to extract the extreme value region. Finally,the extraction results are masked to eliminate the non-terraced areas,and the final terraced extraction results are obtained. Taking Wangdonggou watershed in Changwu County of Shaanxi Province as an experimental sample area,the experimental results are compared with the results of terrace extraction,which are labeled by visual interpretation based on remote sensing image,or extracted from illumination model of DEM shading. The comparison results show that the accuracy of this method is 90.67%. Compared with true value of visual interpretation,it has a higher extraction accuracy. Compared with the results of illumination model of DEM shading,this method can provide more complete and continuous result of terrace. The rapid extraction method and results of the terrace can provide a basis for the research of soil and water conservation,agricultural development and ecological environment control.

References:

[1] 代文,那嘉明,杨昕,等. 基于DEM光照晕渲模拟的梯田自动提取方法[J]. 地球信息科学学报,2017,19(6):754-762.
[2]刘芬. 黄土高原梯田DEM地形特征研究[D]. 西安:西北大学,2015.
[3]张雨果. 基于面向对象的遥感影像梯田信息提取研究[D]. 杨凌:西北农业科技大学,2016.
[4]赵护兵,刘国彬,吴瑞俊. 黄土丘陵区不同类型农地的养分循环平衡特征[J]. 农业工程学报,2006,22(1):58-64.
[5]熊利锋. 梯田发展现状概述[J]. 甘肃水利水电技术,2015,51(4):55-57.
[6]党恬敏. 基于高分影像的黄土高原梯田提取技术研究[D]. 杨凌:西北农业科技大学,2017.
[7]于浩,刘志红,张晓萍,等. 基于傅立叶变换的梯田纹理特征提取[J]. 国土资源遥感,2008,20(2):39-42.
[8]赵汉青. 梯田自动提取及特征分析[D]. 南京:南京师范大学,2016.
[9]张雨果,王飞,孙文义,等. 基于面向对象的SPOT卫星影像梯田信息提取研究[J]. 水土保持研究,2016,23(6):345-351.
[10]薛牡丹. 基于面向对象分析的无人机影像梯田田面提取研究[D]. 杨凌:西北农林科技大学,2018.
[11]张宏鸣,胡勇,杨勤科,等. 基于影像与坡度数据融合的梯田田块分割方法[J]. 农业机械学报,2018,49(4):249-256.
[12]胡勇. 面向无人机影像和坡度数据的梯田田块提取方法研究[D]. 杨凌:西北农林科技大学,2018.
[13]赵文礼. 黄河流域的梯田[J]. 中国水土保持,1983(2):36-40.
[14]赵卫东,汤国安,徐媛,等. 梯田地形形态特征及其综合数字分类研究[J]. 水土保持通报,2013,33(1):295-300.
[15]GONG J Y,ZHOU Q M,TANG G A. A study of accuracy and algorithms for calculating slope and aspect based on grid digital elevation model(DEM)[J]. Acta Geodaetica Et Cartographic Sinica,2004,33(3):258-263.
[16]PEUCKER T K,DOUGLAS D H. Detection of surface-specific points by local parallel processing of discrete terrain elevation data[J]. Computer Graphics & Image Processing,1975,4(4):375-387.
[17]周启鸣,刘学军. 数字地形分析[M]. 北京:北京科学出版社,2006.
[18]王婷婷. 黄土小流域沟壑的种群特征研究初探[D]. 南京:南京师范大学,2015.
[19]赵欣,王晓晶,赵院,等. 国产高分一号卫星数据傅里叶变换提取梯田影像可行性分析[J]. 中国水土保持,2016(1):63-65,73.
[20]徐静,王春,张耀民,等. 规则格网DEM中平直面状特征地形识别与提取[J]. 测绘科学,2014,39(8):163-166.

Memo

Memo:
-
Last Update: 2020-05-15