|Table of Contents|

Temporal and Spatial Characteristics of Traveling Hotspots ofChengdu Residents Based on Multi-source Data(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年02期
Page:
80-87
Research Field:
城乡规划学
Publishing date:

Info

Title:
Temporal and Spatial Characteristics of Traveling Hotspots ofChengdu Residents Based on Multi-source Data
Author(s):
Wang Yuhuan1Jin Cheng12Du Jiazhen1
(1.School of Geography,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)
Keywords:
taxi trajectory dataPOItravel hotspotstime and space characteristicsChengdu
PACS:
K901
DOI:
10.3969/j.issn.1672-1292.2020.02.012
Abstract:
Taking the downtown of Chengdu as an example,the taxi GPS track is used to generate hotspots for getting on and off,combined with POI data to identify the urban functional area,and the time and space characteristics of residents’ travel are compared from different angles,weekends and holidays. The study finds that the business office area and leisure tourism area in the study area are mostly distributed in the periphery of the study area,and other types of functional areas are more evenly distributed; and that on the weekends and working days,the hotspots of on the taxi become dispersed from time to time. Car hotspots first gather and then spread; the hotspots formed in the business office area during the working day are more than at the weekends. The other types of land use have little difference in the hotspots formed at the weekends and during the working days; Wuhou District and Jinniu District have more travels,but the hotspots are sporadic and not concentrated. The hotspots in Qingyang District are relatively continuous and concentrated in the central area of the city.

References:

[1] 柴彦威,申悦,马修军,等. 北京居民活动与出行行为时空数据采集与管理[J]. 地理研究,2013,32(3):441-451.
[2]冯建喜,杨振山. 南京市城市老年人出行行为的影响因素[J]. 地理科学进展,2015,34(12):1598-1608.
[3]黄建中,吴萌. 特大城市老年人出行特征及相关因素分析——以上海市中心城为例[J]. 城市规划学刊,2015(2):93-101.
[4]杨琦,袁华智,冯树民. 不同经济条件下的农村居民出行特征[J]. 长安大学学报(自然科学版),2014,34(1):76-83.
[5]黄建中. 1980年代以来我国特大城市居民出行特征分析[J]. 城市规划学刊,2005(3):71-75.
[6]陈梓烽,柴彦威,周素红. 不同模式下城市郊区居民工作日出行行为的比较研究——基于北京与广州的案例分析[J]. 人文地理,2015,30(2):23-30.
[7]郭文伯,张艳,柴彦威. 城市居民出行的空气污染暴露测度及其影响机制——北京市郊区社区的案例分析[J]. 地理研究,2015,34(7):1310-1318.
[8]刘清春,张莹莹,肖燕,等. 济南市主城区私家车日常出行碳排放特征及影响因素[J]. 资源科学,2018,40(2):262-272.
[9]王宇环,靳诚,安鸿波,等. 基于低碳出行方式的南京市本地居民景点可达性研究[J]. 长江流域资源与环境,2018,27(11):2443-2452.
[10]刘盼盼. 基于空间聚类和Weka平台的出租车载客热点区域挖掘研究[D]. 长春:吉林大学,2014.
[11]赵利刚. 基于出租车轨迹数据的载客情况可视化分析[D]. 杭州:浙江工业大学,2014.
[12]郑林江,赵欣,蒋朝辉,等. 基于出租车轨迹数据的城市热点出行区域挖掘[J]. 计算机应用与软件,2018,35(1):1-8.
[13]冯琦森. 基于出租车轨迹的居民出行热点路径和区域挖掘[D]. 重庆:重庆大学,2016.
[14]吕江波. 基于出租车供需关系的大规模出租车轨迹数据挖掘研究[D]. 兰州:兰州交通大学,2016.
[15]陈红丽. 基于出租车GPS数据的居民出行时空规律和出行热点区域研究[D]. 昆明:云南大学,2016.
[16]WOLF J,GUENSLER R,BACHMAN W. Elimination of the travel diary:an experiment to derive trip purpose from GPS travel data[J]. Transportation Research Record:Journal of the Transportation Research Board,2001,3(15):125-134.
[17]赵鹏祥. 基于轨迹聚类的城市热点区域提取与分析方法研究[D]. 武汉:武汉大学,2015.
[18]马云飞. 基于出租车轨迹点的居民出行热点区域与时空特征研究:以昆山市为例[D]. 南京:南京师范大学,2014.
[19]张铁映,李宏伟,许栋浩,等. 采用密度聚类算法的兴趣点数据可视化方法[J]. 测绘科学,2016,41(5):157-162.
[20]池娇,焦利民,董婷,等. 基于POI数据的城市功能区定量识别及其可视化[J]. 测绘地理信息,2016,41(2):68-73.
[21]谷岩岩,焦利民,董婷,等. 基于多源数据的城市功能区识别及相互作用分析[J]. 武汉大学学报(信息科学版),2018,43(7):1113-1121.
[22]浩飞龙,王士君,冯章献,等. 基于POI数据的长春市商业空间格局及行业分布[J]. 地理研究,2018,37(2):366-378.
[23]许泽宁,高晓路. 基于电子地图兴趣点的城市建成区边界识别方法[J]. 地理学报,2016,71(6):928-939.
[24]陆化普. 交通规划理论与方法[M]. 2版. 北京:清华大学出版社,2006.
[25]DOUGLAS G P. Tourism in Paris studies at the micro scale[J]. Annals of Tourism Research,1999,1(26):91-93.
[26]赵卫锋,李清泉,李必军. 利用城市POI数据提取分层地标[J]. 遥感学报,2011,15(5):973-988.

Memo

Memo:
-
Last Update: 2020-05-15