|Table of Contents|

Study on Thermal Storage Process of CompositeMaterial in Solar Energy Storage Heat Pump System(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年04期
Page:
1-9
Research Field:
动力工程及工程热物理
Publishing date:

Info

Title:
Study on Thermal Storage Process of CompositeMaterial in Solar Energy Storage Heat Pump System
Author(s):
Huang Jinyan1Wu Wei12Wang Xiaoyu1Xia Man1Qin Zhixuan1Liao Yangsang1Yang Chen1
(1.School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China)(2.Engineering Laboratory of Energy System Conversion and Emission Reduction of Jiangsu Province,Nanjing Normal University,Nanjing 210023,China)
Keywords:
energy storagesolar heat pumpvacuum tube collectorcomposite materialFluent simulation
PACS:
TK519
DOI:
10.3969/j.issn.1672-1292.2020.04
Abstract:
In this study,a seasonal energy storage solar heat pump hot water system is designed,which integrates solar energy heat collector,phase-change energy storage container and heat pipe. It uses composite phase change material to store energy,heat pipe to conduct efficient heat transfer,and energy-saving heat supply of heat pump system. The maximum utilization of solar energy is realized by switching working mode in different seasons. The numerical simulation of the solar collector with inserted heat pipe is carried out by Fluent software. Based on Solidfication/Melting and VOF model,the thermal storage process of CA/62# paraffin composite phase change material is simulated. The influence of natural convection is considered by Boussinesq approximation. The results show that the heat supply water demand of energy storage heat pump system in different seasons can not be satisfied by filling a single phase change material in the collector. The composite phase changed material composed of CA and 62# paraffin has two phase change temperatures during the energy storage process,respectively at 32.66 ℃ and 59.45 ℃,which can meet the heat storage requirements of the system in different seasons. In the process of heat storage,due to the density difference between CA and 62#paraffin and the effect of buoyancy,the phenomenon of temperature stratification appears in the longitudinal section of vacuum tube. The results can provide a reliable theoretical basis for the popularization and application of composite phase change energy storage materials.

References:

[1] 陈学锋,何钦波,徐言生,等. 热泵辅助型太阳能热水系统动态性能评价研究[J]. 太阳能学报,2015,36(2):478-483.
[2]颜慧磊,张华,邵秋萍,等. 一种太阳能与空气源双热源热泵系统的性能研究[J]. 上海理工大学学报,2014,36(2):177-180.
[3]SUN X L,WU J Y,DAI Y J,et al. Experimental study on roll-bond collector/evaporator with optimized-channel used in direct expansion solar assisted heat pump water heating system[J]. Applied Thermal Engineering,2014. 66(1/2):571-579.
[4]HE Z B,WAN Q,WANG Z Y,et al. The numerical simulation and experimental study of heat release in a heat storage system with various diameters of aluminum tubes[J]. Heliyon,2019,5(10):e02651.
[5]KHAIRELDIN F,MAHMOUD K,JALAL F,et al. Phase change material thermal energy storage systems for cooling applications in buildings:a review[J]. Renewable and Sustainable Energy Reviews,2020,119:109579.
[6]贺秀芬,白宇辰,刘洋,等. 玻璃真空集热管相变储能单元特性实验测试[J]. 太阳能学报,2020,41(5):40-47.
[7]曲世琳,彭莉,吴晓琼,等. 太阳能热利用中相变蓄热装置优化设计研究[J]. 太阳能学报,2015,36(7):1705-1709.
[8]BAZRI S,SHAHAB B,IRFAN A B,et al. An analytical and comparative study of the charging and discharging processes in a latent heat thermal storage tank for solar water heater system[J]. Solar Energy,2019,185:424-438.
[9]晁岳鹏. 相变材料耦合太阳能在冬季建筑采暖中的应用[J]. 建筑节能,2020,48(4):48-51.
[10]陈之帆,孙志高,汤小蒙,等. 硬脂酸/十八醇/乙酸钠复合相变材料蓄/放热性能[J]. 化工进展,2019,38(4):1833-1838.
[11]王博,朱孝钦,胡劲,等. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报,2019,33(22):3815-3819.
[12]孙晓璐,苏婧,宋肖飞,等. 月桂酸-棕榈酸/Al2O3复合定形相变材料的制备与热性能研究[J]. 化工新型材料,2019,47(6):171-175.
[13]于文艳,王慧娟,田瑞. 石蜡-硬脂酸/石墨复合相变材料的储热性能研究[J]. 功能材料,2019,50(4):4104-4107.
[14]杨致远,董建锴,姜益强,等. 癸酸-月桂酸二元复合相变储能材料循环热稳定性[J]. 建筑科学,2015,31(2):60-64.
[15]AYOMPE L M,DUFFY A. Thermal performance analysis of a solar water heating system with heat pipe evacuated tube collector using data from a field trial[J]. Solar Energy,2013,90:17-28.
[16]ZHU N,HU N,HU P,et al. Experiment study on thermal performance of building integrated with double layers shape-stabilized phase change material wallboard[J]. Energy,2019,167(15):1164-1180.
[17]田松峰,刘丹娜,牛腾赟,等. 移动式相变蓄热系统数值模拟与优化[J]. 太阳能学报,2019,40(6):1511-1518.
[18]LIU F H,XU J X,WANG H T,et al. Numerical method and model for calculating thermal storage time for an annular tube with phase change material[J]. Journal of Central South University,2017,24(1):217-226.
[19]YADAV A,SAMIR S. Experimental and numerical investigation of spatiotemporal characteristics of thermal energy storage system in a rectangular enclosure[J]. Journal of Energy Storage,2019,21:405-417.
[20]高旭娜,吴薇,孟志军,等. 蓄能型振荡热管太阳能集热器热性能[J]. 农业工程学报,2017,33(16):234-240.
[21]吴薇,陈黎,王晓宇,等. 蓄能型太阳能热泵用复合相变材料热性能分析[J]. 农业工程学报,2017,33(13):206-212.
[22]吴薇,夏曼,尹正宇,等. 蓄能材料对内插热管式太阳能热泵系统冬季性能的影响[J]. 农业工程学报,2020,36(5):226-232.
[23]高旭娜,吴薇,戴苏洲,等. 蓄能型振荡热管太阳能集热器性能研究[J]. 南京师范大学学报(工程技术版),2017,17(1):48-57.
[24]唐晓磊. 相变蓄热型地板辐射采暖系统性能研究[D]. 天津:天津大学,2018.
[25]SHAMSUNDAR N,SPARROW E M. Analysis of multidimensional conduction phase change via the enthalpy model[J]. Asme Transactions Journal of Heat Transfer,1975,97(3):333-340.
[26]刘正浩,张小松,王昌领,等. 石蜡与石蜡/膨胀石墨熔化性能的实验研究[J]. 化工学报,2020,71(7):3362-3371.
[27]刘丽辉,莫雅菁,孙小琴,等. 纳米增强型复合相变材料的传热特性[J]. 储能科学与技术,2020,9(4):1105-1112.
[28]FELINSKI P,SEKRET R. Effect of a low cost parabolic reflector on the charging efficiency of an evacuated tube collector/storage system with a PCM[J]. Solar Energy,2017,144:758-766.
[29]费华,顾庆军,王林雅,等. 癸酸-棕榈酸二元复合相变材料的相变特性研究[J]. 太阳能学报,2020,41(1):80-85.
[30]MA L Y,WANG Q W,LI L P. Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage[J]. Solar Energy Materials and Solar Cells,2019,194:215-221.
[31]中华人民共和国住房和城乡建设部.建筑给水排水设计标准:GB50015—2019[S]. 北京:中国计划出版社,2019.
[32]曾燕,王珂清,谢志清,等. 江苏省太阳能资源评估[J]. 大气科学学报,2012,34(6):658-663.

Memo

Memo:
-
Last Update: 2020-12-15