|Table of Contents|

TLD Object Tracking Algorithm Based on Kernelized Correlation Filter(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年04期
Page:
37-43
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
TLD Object Tracking Algorithm Based on Kernelized Correlation Filter
Author(s):
Dong ChunyanLiu HuaiLiang Qinjia
School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China
Keywords:
object trackingkernelized correlation filterfeature fusionocclusion detection
PACS:
TP391
DOI:
10.3969/j.issn.1672-1292.2020.04.006
Abstract:
TLD tracker is improved in this paper in order to increase the tracking performance when the tracked object scale is changing or in occlusion. For the tracker,KCF tracker is used to replace the original tracker of TLD algorithm,and KCF tracker is improved as follows:the Lab color feature of the object is added in feature extraction,scale estimation is introduced in search for the object location,in the model updating stage,and tracking state judgment mechanism is adopted to determine the reliability of the tracking results by setting the threshold value of maximum output response,the threshold value of APCE and the threshold value of the random fern classifier,so as to improve the tracking effect of the tracker under the conditions of scale variation,occlusion and illumination variation. For the detector,in order to reduce a large number of meaningless windows before detection,Kalman filter is used to estimate the object position,and then an improved cascade classifier is used to locate the object more accurately around the estimated position. Variance classifier and random fern classifier are still used in the first two levels of the improved cascade classifier,and the third level is classified by the improved KCF tracker. Qualitative and quantitative analysis of experimental results on the OTB-50 dataset show that the tracking performance of the proposed algorithm is superior to that of other tracking algorithms and that it can ensure the real-time performance.

References:

[1] 卢湖川,李佩霞,王栋. 目标跟踪算法综述[J]. 模式识别与人工智能,2018,31(1):61-76.
[2]VOJIR T,NOSKOVA J,MATAS J. Robust scale-adaptive mean-shift for tracking[J]. Pattern Recognition Letters,2014,49:250-258.
[3]ZHANG T Z,XU C S,YANG M H. Learning multi-task correlation particle filters for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(2):365-378.
[4]KALAL Z,MIKOLAJCZYK K,MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1409-1422.
[5]HARE S,GOLODETZ S,SAFFARI A,et al. Struck:structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(10):2096-2109.
[6]LI H,LI Y,PORIKLI F. DeepTrack:learning discriminative feature representations online for robust visual tracking[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society,2016,25(4):1834-1848.
[7]CHOI J,KWON J,LEE K M. Real-time visual tracking by deep reinforced decision making[J]. Computer Vision and Image Understanding,2018,171:10-19.
[8]GORDON D,FARHADI A,FOX D. Re3:real-time recurrent regression networks for visual tracking of generic objects[J]. IEEE Robotics and Automation Letters,2018,3(2):788-795.
[9]WANG Q,ZHANG L,BERTINETTO L,et al. Fast online object tracking and segmentation:a unifying approach[C]//IEEE Conference on Computer Vision and Pattern Recognition. Los Angeles,USA:IEEE Computer Society,2019:1328-1338.
[10]HENRIQUES J F,CASEIRO R,MARTINS P,et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):583-596.
[11]张惊雷,时鹏,温显斌. 基于尺度自适应均值偏移优化的TLD跟踪算法[J]. 控制与决策,2019,34(1):144-150.
[12]毛晓波,周晓东,刘艳红.基于FAST特征点改进的TLD目标跟踪算法[J]. 郑州大学学报(工学版),2018,39(2):1-5,17.
[13]王姣尧,侯志强,余旺盛,等. 采用核相关滤波的快速TLD视觉目标跟踪[J]. 中国图象图形学报,2018,23(11):1686-1696.
[14]常立博,杜慧敏,毛智礼,等. 面向视频监控的TLD改进目标跟踪算法研究[J]. 计算机工程与应用,2018,54(14):191-198.
[15]SINGH G,CHHABRA I. Effective and fast face recognition system using complementary OC-LBP and HOG feature descriptors with SVM classifier[J]. Journal of Information Technology Research,2018,11(1):91-110.
[16]BERTINETTO L,VALMADRE J,GOLODETZ S,et al. Staple:complementary learners for real-time tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,USA:IEEE Computer Society,2016:1401-1409.
[17]WANG M,LIU Y,HUANG Z. Large margin object tracking with circulant feature maps[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,USA:IEEE Computer Society,2017:4800-4808.
[18]WU Y,LIM J,YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1834-1848.

Memo

Memo:
-
Last Update: 2020-12-15