|Table of Contents|

Vehicle Detection Algorithm Based on Improved Mask R-CNNin Traffic Surveillance Video(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年04期
Page:
44-50
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Vehicle Detection Algorithm Based on Improved Mask R-CNNin Traffic Surveillance Video
Author(s):
Lu Fei12Shen Shibin13Su Xiaoyun12Xie Fei123Zhang Yue1Liu Yijian123
(1.School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing,Nanjing 210023,China)(3.Nanjing Industry Institute for Advanced Intelligent Equipment Co.,Ltd.,Nanjing 210023,China)
Keywords:
target detectiontraffic surveillanceMask R-CNNmask prediction
PACS:
TP391
DOI:
10.3969/j.issn.1672-1292.2020.04.007
Abstract:
Aiming at the problem of missing detection or wrong detection of target vehicles caused by occlusion in traffic surveillance video,an improved vehicle detection algorithm based on Mask R-CNN traffic surveillance video is proposed. Firstly,the backbone network based on the bottleneck structure is used to improve the ability of extracting features from the backbone network. Then,the mask branch based on the predicted mask score is used to fuse the target’s category score and mask quality score to improve the vehicle’s mask quality. Finally,the target detection loss function based on Arcface Loss can improve the discriminability between different features and improve the detection accuracy of the target. The experimental results show that the improved Mask R-CNN model can better detect the shielded vehicle,and that the detection accuracy of the target vehicle is higher than those of the Faster R-CNN,YOLO v3 and Mask R-CNN model,thus solving the problem of missing or wrong detection of the target vehicle.

References:

[1] 沈连丰,张瑞,朱亚萍,等. 面向自动驾驶的车辆精确实时定位算法[J]. 电子与信息学报,2020,42(1):28-35.
[2]ANALA M R,MAKKER M,ASHOK A. Anomaly detection in surveillance videos[C]//2019 26th International Conference on High Performance Computing,Data and Analytics Workshop. Hyderabad,India:IEEE Computer Society,2019:93-98.
[3]GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//The IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus,USA:IEEE Computer Society,2014:580-587.
[4]UIJLINGS J R R,SANDE K E A,GEVERS T,et al. Selective search for object recognition[J]. International Journal of Computer Vision,2013,104(2):154-171.
[5]HE K,YU X. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,37(9):1904-1916.
[6]GIRSHICK R B. Fast R-CNN[C]//The IEEE International Conference on Computer Vision(ICCV). Santiago,Chile:IEEE Computer Society,2015:1440-1448.
[7]REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(6):1137-1149.
[8]ZHANG X,LI B,HU H. Scale-aware hierarchical loss:a multipath RPN for multi-scale pedestrian detection[C]//IEEE Visual Communications and Image Processing(VCIP). Petersburg,USA:IEEE Computer Society,2017:1-4.
[9]REDMON J,DIVVALA S K,GIRSHICK R B,et al. You only look once:Unified,real-time object detection[C]//IEEE International Conference on Computer Vision and Pattern Recognition. Las Vegas,USA:IEEE Computer Society,2016:779-788.
[10]HE K,GKIOXARI G,DOLLAR P,et al. Mask R-CNN[C]//IEEE International Conference on Computer Vision and Pattern Recognition. Hawaii,USA:IEEE computer Society,2017:2961-2969.
[11]LI Y,QI H,DAI J. Fully convolutional instance-aware semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. Hawaii,USA:IEEE Computer Society,2017:4438-4446.
[12]陈泽,叶学义,钱丁炜,等. 基于改进的Faster R-CNN小尺度行人检测[J]. 计算机工程,2020,46(9):226-232.
[13]江昆鹏,闫洪涛,杨红卫,等. 改进Mask R-CNN的细粒度车型识别算法[J]. 软件,2020,41(3):1-5.
[14]朱有产,王雯瑶. 基于改进Mask R-CNN的绝缘子目标识别方法[J]. 微电子学与计算机,2020,37(2):69-74.
[15]石杰,周亚丽,张奇志. 基于改进Mask R-CNN和Kinect的服务机器人物品识别系统[J]. 仪器仪表学报,2019,40(4):216-228.
[16]马素刚,赵祥模,侯志强,等. 一种基于ResNet网络特征的视觉目标跟踪算法[J]. 北京邮电大学学报,2020,43(2):129-134.
[17]LIU W,WEN Y,YU Z,et al. SphereFace:deep hypersphere embedding for face recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Hawaii,USA:IEEE Computer Society,2017:6738-6746.
[18]DENG J,GUO J,ZAFEIRIOU S. ArcFace:additive angular margin loss for deep face recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Los Angeles,USA:IEEE Computer Society,2019:4685-4694.

Memo

Memo:
-
Last Update: 2020-12-15