|Table of Contents|

Research on Fusion SLAM of Binocular Camera and Lidar(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年01期
Page:
64-71
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Research on Fusion SLAM of Binocular Camera and Lidar
Author(s):
Liu HongxunWang Wei
College of Automation,Nanjing University of Information Science and Technology,Nanjing 210006,China
Keywords:
FAST feature pointsgraph optimizedSLAMbinocular visionbag of words
PACS:
TP242.6
DOI:
10.3969/j.issn.1672-1292.2021.01.010
Abstract:
Aiming at the problem of closed-loop detection errors in the graph-optimized laser SLAM algorithm in high-similarity scenes,the method of using binocular cameras for closed-loop detection is presented in this paper. We use FAST feature points and BRIEF descriptors with rotation invariance for binocular depth estimation. We introduce the concept of local maps,and use single-frame lidar data to match with local maps to improve the accuracy of the SLAM front-end. A k-ary tree dictionary based on the BOW model is used to evaluate the similarity of the pictures to complete the closed-loop detection,and finally,the global optimization problem is constructed and solved. The contrastive experiment with the mainstream open source lidar SLAM algorithms shows that the method improves the problem which the closed-loop detection method that only uses lidar data for closed-loop detection fails in a scene with high similarity,and that the operation effect in a larger area is significantly better than that based on Filtered SLAM algorithm.

References:

[1] SEBASTIAN T. Probabilistic robotics[M]. Beijing:China Machine Press,2017.
[2]Aisha W B. Dynamic pose graph SLAM:long-term mapping in low dynamic environments[C]//Intelligent Robots and Systems. Vilamoura,Portugal,2012.
[3]张恒,徐万红,张禹. 激光雷达与深度相机融合的SLAM技术研究[J]. 机械工程师,2020,47(7):22-24.
[4]陈庆伟,李民东,罗川,等. 视觉SLAM中图像特征点提取与匹配算法研究[J]. 现代制造工程,2019,41(6):44-45.
[5]高翔,张涛. 视觉SLAM十四讲[M]. 北京:电子工业出版社,2017:132-138.
[6]刘国林,姜岩,陶华学. 非线性最小二乘参数平差[J]. 测绘学报,1998,27(3):224-230.
[7]吴玲,刘忠,卢发兴. 全局收敛高斯-牛顿法解非线性最小二乘定位问题[J]. 火控雷达技术,2003,32(1):3-4.
[8]KENSUKE K,KANJI T. Multi-scale bag-of-features for large-size map retrieval[C]//Robotics and Biomimeties. Tianjin:IEEE Computer Press,2010:961-966.
[9]SIVIC J,ZISSERMAN A. Video google:a text retrieval approach to object matching in videos[C]//Computer Vision:IEEE,2003:1470-1477.
[10]ROBERTSON S. Understanding inverse document frequency:on theoretical arguments for IDF[J]. Journal of Documentation,2004,60(5):503-520.
[11]NISTER D,STEWENIUS H. Scalable recognition with a vocabulary tree[C]//Computer Vision and Pattern Recognition:IEEE,2006:2161-2168.
[12]OLSON E B. Real-time correlative scan matching[C]//IEEE International Conference on Robotics and Automation:IEEE,2009.

Memo

Memo:
-
Last Update: 2021-03-15