|Table of Contents|

Car Whistle Recognition Based on Sub-Band SpectralEntropy Method and PSO-GA-SVM(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年02期
Page:
27-33
Research Field:
信息与通信工程
Publishing date:

Info

Title:
Car Whistle Recognition Based on Sub-Band SpectralEntropy Method and PSO-GA-SVM
Author(s):
Yu Linghao1Lu Tiewen1Li Chen1Zeng Yumin1Yuan Fang2
(1.School of Computer and Electronic Information/School of Artificial Intelligence,Nanjing Normal University,Nanjing 210023,China)(2.Hangzhou Aihua Intelligent Technology Co.,Ltd.,Hangzhou 311121,China)
Keywords:
car whistle recognitionsub-band spectral entropy methodsupport vector machineparticle swarm optimizationgenetic algorithm
PACS:
TN912.34
DOI:
10.3969/j.issn.1672-1292.2021.02.005
Abstract:
In order to solve the problem of misjudgment in car whistle capture system,an algorithm based on sub-band spectral entropy and support vector machine is proposed in this paper. Firstly,sub-band spectral entropy method is used to preliminarily judge the sound samples. The samples whose sub-band spectral entropies are higher than a threshold value are directly determined as non-whistle samples. Then,the suspected whistle parts are segmented in the samples which are initially judged as whistle,and Mel frequency cepstrum coefficient is extracted as sound feature. Finally,the segmentation results are classified by support vector machine,and the parameters of support vector machine are optimized by the combination of particle swarm optimization and genetic algorithm. Simulation results show that the algorithm has good robustness. In the whistle recognition of actual collected samples,the algorithm also achieves a higher accuracy.

References:

[1] 袁芳,闫建伟,张勇,等. 汽车鸣笛声实时抓拍的理论研究和系统实现[J]. 电声技术,2018,42(11):13-15,21.
[2]侍艳华,刘菁原,卞飞,等. 基于MFCC和CNN的汽车鸣笛声识别算法[J]. 电声技术,2020,44(5):30-33.
[3]郑皓,赵庶旭,屈睿涛. 一种用于城市交通的优化声音识别仿真[J]. 计算机技术与发展,2019,29(2):60-64.
[4]祁兵兵,刘金磊,张焕胜,等. 智能交通系统中声源端点识别算法[J]. 电声技术,2018,42(10):8-13,68.
[5]项彬,马石磊,陈建峰,等. 一种基于支持向量机的汽车鸣笛分类方法:201811405638.8[P]. 2019-04-12.
[6]蒋翠清,邵宏波. 基于MFCC与改进ACF的汽车声音识别算法研究[J]. 计算机技术与发展,2015,25(2):140-143.
[7]张铁成. 基于麦克风阵列的声音识别与定位算法研究[D]. 南京:南京师范大学,2016.
[8]刘建平,张一闻,刘颖. 基于麦克风阵列的汽车笛语识别及笛声定位方法[J]. 西安电子科技大学学报,2012,39(1):163-167.
[9]王琳,李成荣. 一种基于自适应谱熵的端点检测改进方法[J]. 计算机仿真,2010,27(12):373-375,395.
[10]张毅,王可佳,席兵,等. 基于子带能熵比的语音端点检测算法[J]. 计算机科学,2017,44(5):304-307,319.
[11]刘灵,孙晨晨,徐寅林,等. 基于图像预处理分类分割的盲道分割算法[J]. 南京师范大学学报(工程技术版),2020,20(1):42-48.
[12]SETTLES M,SOULE T. Breeding swarms:a GA/PSO hybrid[C]//Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation Conference,CECCO 2005. Washington DC,USA:ACM,2005:161-168.
[13]ALOMARI F,LIU G H. Novel hybrid soft computing pattern recognition system SVM-GAPSO for classification of eight different hand motions[J]. Optik,2015,126(23):4757-4762.
[14]CLERC M,KENNEDY J. The particle swarm—explosion,stability and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
[15]宋知用. MATLAB语音信号分析与合成[M]. 2版. 北京:北京航空航天大学出版社,2017.

Memo

Memo:
-
Last Update: 2021-06-30