|Table of Contents|

Traffic Video Target Detection Algorithm Based on Improved YOLOv3(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年02期
Page:
47-53
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Traffic Video Target Detection Algorithm Based on Improved YOLOv3
Author(s):
Liang QinjiaLiu HuaiLu Fei
School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China
Keywords:
traffic monitoringtarget detectiondeep learningconvolutional neural network
PACS:
TP391.4
DOI:
10.3969/j.issn.1672-1292.2021.02.008
Abstract:
Aiming at the problem that the existing target detection algorithm based on YOLOv3 is difficult to balance the speed and accuracy of multi-scale target detection,the paper proposes an improved YOLOv3 multi-scale target detection algorithm. The algorithm firstly selects the number of candidate anchor frames and the aspect ratio dimensions for each scale through k-means++ clustering,which effectively reduces the clustering deviation caused by the original algorithm at the initial clustering points. Secondly,the YOLOv3 detection scale is extended from 3 to 4,in order to improve the accuracy of target detection under different scales. Finally,in order to avoid gradient fading,the six convolutional layers before the detection layer are converted into two residual units. The experimental results on UA-DETRAC dataset show that the accuracy and recall rate of this method are 7.91% and 4.57% higher than the original YOLOv3,respectively. Meanwhile,the processing speed can meet the real-time requirements of traffic video.

References:

[1] 李明熹,林正奎,曲毅. 计算机视觉下的车辆目标检测算法综述[J]. 计算机工程与应用,2019,55(24):20-28.
[2]LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444.
[3]WU L,WANG Y,GAO J,et al. Where-and-when to look:deep siamese attention networks for video-based person re-identification[J]. IEEE Transactions on Multimedia,2019,21(6):1412-1424.
[4]YOLCU G,OZTEL I,KAZAN S,et al. Deep learning-based face analysis system for monitoring customer interest[J]. Journal of Ambient Intelligence and Humanized Computing,2020,11(1):237-248.
[5]崔艳鹏,王元皓,胡建伟. 一种改进YOLOv3的动态小目标检测方法[J]. 西安电子科技大学学报,2020,47(3):1-7.
[6]黄继鹏,史颖欢,高阳. 面向小目标的多尺度Faster-RCNN检测算法[J]. 计算机研究与发展,2019,56(2):319-327.
[7]GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus,USA:IEEE,2014:580-587.
[8]GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV). Santiago,Chile:IEEE,2015:1440-1448.
[9]KOIRALA A,WALSH K B,WANG Z,et al. Deep learning for real-time fruit detection and orchard fruit load estimation:benchmarking of 《MangoYOLO》[J]. Precision Agriculture,2019,20(6):1107-1135.
[10]REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[11]戴立伟,黄山. 交通场景目标检测指标优化研究[J]. 激光与光电子学进展,2020,57(14):344-352.
[12]LIU W,ANGUELOV D,ERHAN D,et al. SSD:Single shot multiBox detector[C]//European Conference on Computer Vision 2016. Glasgow,UK,2020.
[13]SANG J,WU Z,GUO P,et al. An improved YOLOv2 for vehicle detection[J]. Sensors,2018,18(12):4272.
[14]REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL]. [2020-07-27]. https://arxiv.org/abs/1804.02767.
[15]孔方方,宋蓓蓓. 改进YOLOv3的全景交通监控目标检测[J]. 计算机工程与应用,2020,56(8):20-25.
[16]ZHAO X,PU F,WANG Z,et al. Detection,tracking,and geolocation of moving vehicle from UAV using monocular camera[J]. IEEE Access,2019,7:101160-101170.
[17]XU Z F,JIA R S,SUN H M,et al. Light-YOLOv3:fast method for detecting green mangoes in complex scenes using picking robots[J]. Applied Intelligence,2020,50(12):4670-4687.
[18]HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas,USA:IEEE,2016:770-778.
[19]WEN L,DU D,CAI Z,et al. UA-DETRAC:a new benchmark and protocol for multi-object detection and tracking[J]. Computer Science,2020,193:102907.

Memo

Memo:
-
Last Update: 2021-06-30