|Table of Contents|

Research on Detection Technology of Archive Box LabelsBased on Image Processing(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年02期
Page:
60-64
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Research on Detection Technology of Archive Box LabelsBased on Image Processing
Author(s):
Li JingSu YeXu Yinlin
School of Computer and Electronic Information,Nanjing Normal University,Nanjing 210023,China
Keywords:
archive detectionimage segmentationimage matching
PACS:
TP391
DOI:
10.3969/j.issn.1672-1292.2021.02.010
Abstract:
This article studies a detection technology of archive box labels based on image processing,which captures an image of labels of archive boxes in the window area of the cabinet by a camera in front of the desk of the cabinet,segments the image of labels by U-Net network,and then obtains a single archive box label picture corrected by affine transformation,and finally,uses the surf algorithm to match the picture with the database. The experimental results show that the matching accuracy rate of archive boxes measured by this method reaches up to 99.60%.

References:

[1] 殷策. 基于计算机视觉的书脊识别算法研究[D]. 赣州:江西理工大学,2016.
[2]冯庸. 基于视觉的图书馆在架错序图书自动识别技术研究[D]. 沈阳:沈阳工业大学,2017.
[3]RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin,Germany:Springer,2015:234-241.
[4]BAY H,TUYTELAARS T,GOOL L V. SURF:speeded up robust features[C]//9th European Conference on Computer Vision. Garz,Austria:Springer-Verlag,2006:404-417.
[5]姜枫,顾庆,郝慧珍,等. 基于内容的图像分割方法综述[J]. 软件学报,2017,28(1):160-183.
[6]柳小波,张育维. 基于U-Net和Res_UNet模型的传送带矿石图像分割方法[J]. 东北大学学报(自然科学版),2019,40(11):1623-1629.
[7]胡蝶,侯俊,何晨航,等. 基于特征匹配与CNN的浮动验证码识别研究[J]. 软件导刊,2020,19(5):37-41.
[8]贾迪,朱宁丹,杨宁华,等. 图像匹配方法研究综述[J]. 中国图象图形学报,2019,24(5):677-699.
[9]崔晨. 基于图像的书籍检测与识别关键技术研究与实现[D]. 南京:南京理工大学,2018.
[10]李伯轩. 鬼成像目标识别算法研究[D]. 南京:南京理工大学,2017.
[11]王永明,王贵锦. 图像局部不变性特征与描述[M]. 北京:国防工业出版社,2010.
[12]MUJA M,LOWE D G. Fast approximate nearest neighbors with automatic algorithm configuration[C]//Proceedings of IEEE Conference on Computer Vision Theory and Applications. Lisbon,Portugal:IEEE Computer Society,2009:331-340.
[13]徐明,刁燕. 基于SURF算子与FLANN搜索的图像匹配方法研究[J]. 现代计算机,2020,14:49-52,57.

Memo

Memo:
-
Last Update: 2021-06-30