|Table of Contents|

Extreme Multistability Reconstruction of Two-Memristor BasedShinriki Oscillator and Digital Circuit Experiment(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年03期
Page:
10-21
Research Field:
电气工程
Publishing date:

Info

Title:
Extreme Multistability Reconstruction of Two-Memristor BasedShinriki Oscillator and Digital Circuit Experiment
Author(s):
Zheng HongliangMin FuhongZhang WenCao Baoguo
NARI School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China
Keywords:
dual memristive Shinriki oscillatordimensionality reduction modelextreme multistable phenomenonphase trajectory diagram
PACS:
TN601
DOI:
10.3969/j.issn.1672-1292.2021.03.002
Abstract:
In this paper,by adding two flux-controlled memristors into the classic Shinriki oscillator,a chaotic oscillation circuit is constructed. With the incremental magnetic flux-charge analysis method,the Shinriki circuit based on the two flux-controlled memristors conducts dimensionality reduction,meanwhile the third-order dimensionality reduction model is obtained. Then,the coexisting birfurcation and antimonotonic phenomenon in the flux-charge domain are discussed. At the same time,the extreme multistablity of the oscillator is reconstructed and the bursting behavior in the multistable domain is analyzed. In addition,the equivalent circuit of the system after dimensionality reduction is built and the corresponding phase trajectory diagram is captured,which verifies the correctness of the dynamic analysis.

References:

[1] CHUA L O. Memristor—the missing circuit element[J]. IEEE Transactions Circuit Theory,1971,18(5):507-519.
[2]YIN Z Y,TIAN H,CHEN G H,et al. What are memristor,memcapacitor and meminductor[J]. IEEE Transactions on Circuits and Systems,2015,62(4):402-406.
[3]武花干,包伯成,徐权. 基于二极管桥与串联RL滤波器的一阶广义忆阻模拟器[J]. 电子学报,2015,43(10):2129-2132.
[4]孙广辉,徐兆青. 基于有源电感的二极管桥忆阻模拟器[J]. 电子设计工程,2019,27(24):66-74.
[5]AKGUL A,JACQUES K,RAJAGOPAL K,et al. Simulation and experimental implementations of memcapacitor based multi-stable chaotic oscillator and its dynamical analysis[J]. Physica Scripta,2021,96(1):15209.
[6]JAHANSHAHI H,YOUSEFPOUR A,MUNOZ-PACHECO J M,et al. A new fractional-order hyperchaotic memristor oscillator:dynamic analysis,robust adaptive synchronization,and its application to voice encryption[J]. Applied Mathematics and Computation,2020,383:1-14.
[7]吕晏旻,闵富红. 基于现场可编程逻辑门阵列的磁控忆阻电路对称动力学行为分析[J]. 物理学报,2019,68(13):49-60.
[8]MINATI L,GAMBUZZA L V,THIO W J,et al. A chaotic circuit based on a physical memristor[J]. Chaos Solitons & Fractals,2020,138:109990.
[9]王义波,闵富红,张雯,等. 忆阻FitzHugh-Nagumo神经元电路有限时间同步[J]. 南京师范大学学报(工程技术版),2020,20(2):7-14.
[10]WANG C H,HU X,ZHOU L,et al. A memristive hyperchaotic multiscroll jerk system with controllable scroll numbers[J]. International Journal of Bifurcation & Chaos,2017,27(6):1750091.
[11]ZHANG Y M,GUO M,DOU G,et al. A physical SBT-memristor-based Chua’s circuit and its complex dynamics[J]. Chaos,2018,28(8):083121.
[12]SHINRIKI M,YAMAMOTO M,MORI S. Multimode oscillations in a modified Van Der Pol oscillator containing a positive nonlinear conductance[J]. Proceeding of the IEEE,1981,69(3):394-395.
[13]RAJAGOPAL K,NAZARIMEHR F,GUESSAS L,et al. Analysis,control and FPGA implementation of a fractional-order modified shinriki circuit[J]. Journal of Circuits,Systems and Computers,2019,28(14):1950232.
[14]JIN Q S,MIN F H,LI C B. Infinitely many coexisting attractors of a dual memristive Shinriki oscillator and its FPGA digital implementation[J]. Chinese Journal of Physics,2019,62:342-357.
[15]CHEN M,FENG Y,BAO H,et al. State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium[J]. Chaos Solitons & Fractals,2018,115:313-324.
[16]CHEN M,FENG Y,BAO H,et al. Hybrid state variable incremental integral for reconstructing extreme multistability in memristive jerk system with cubic nonlinearity[J]. Complexity,2019:8549472.
[17]CORINTO F,FORTI M. Memristor circuits:flux—charge analysis method[J]. IEEE Transactions on Circuits & Systems I Regular Papers,2016,63(11):1997-2009.
[18]CHEN M,BAO BC,JIANG T,et al. Flux-charge analysis of initial state-dependent dynamical behaviors of a memristor emulator-based Chua’s circuit[J]. International Journal of Bifurcation and Chaos,2018,28(10):1850120.
[19]MIN F H,LI C,ZHANG L,et al. Initial value-related dynamical analysis of the memristor-based system with reduced dimensions and its chaotic synchronization via adaptive sliding mode control method[J]. Chinese Journal of Physics,2019,58:117-131.
[20]CHEN M,SUN M X,BAO H,et al. Flux-charge analysis of two-memristor-based Chua’s circuit:dimensionality decreasing model for detecting extreme multistability[J]. IEEE Transactions on Industrial Electronics,2020,67(3):2197-2206.
[21]LI C B,SUN J Y,LU T A,et al. Symmetry evolution in chaotic system[J]. Symmetry,2020,12(4):574.
[22]ZHANG S,ZENG Y C. A simple Jerk-like system without equilibrium:asymmetric coexisting hidden attractors,bursting oscillation and double full Feigenbaum remerging trees[J]. Chaos Solitons & Fractals,2019,120:25-40.
[23]WU H G,YE Y,CHEN M,et al. Extremely slow passages in low-pass filter-based memristive oscillator[J]. Nonlinear Dynamics,2019,97(4):2339-2353.

Memo

Memo:
-
Last Update: 2021-09-30