[1] WEI D. Prediction of stock price based on LSTM neural network[C]//Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing(AIAM). Dublin:IEEE,2019:544-547.
[2]ZHOU Y X,ZHANG J. Stock data analysis based on BP neural network[C]//Proceedings of the 2010 Second International Conference on Communication Software and Networks,Singapore:IEEE,2010:396-399.
[3]刘博,王明烁,李永,等. 深度学习在时空序列预测中的应用综述[J]. 北京工业大学学报,2021,47(8):925-941.
[4]李金轩,杜军平,薛哲. 基于多视角股票特征的股票预测研究[J]. 南京大学学报(自然科学),2021,57(1):68-74.
[5]张成云,汪俊. 北京奥运会对A股奥运板块的上市公司效益影响的研究[J]. 特区经济,2007(9):109-111.
[6]HUANG Y,CAPRETZ L F,HO D. Neural network models for stock selection based on fundamental analysis[C]//Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering(CCECE),Edmonton,Canada:IEEE,2019:1-4.
[7]LI X,WU P,WANG W. Incorporating stock prices and news sentiments for stock market prediction:a case of Hong Kong[J]. Information Processing & Management,2020,57(5):102212.
[8]YU H,CHEN R,ZHANG G. A SVM stock selection model within PCA[J]. Procedia Computer Science,2014,31:406-412.
[9]BAO W,YUE J,RAO Y. A deep learning framework for financial time series using stacked autoencoders and long-short term memory[J]. PloS One,2017,12(7):e0180944.
[10]CHEN C,ZHANG Q,YU B,et al. Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier[J]. Computers in Biology and Medicine,2020,123:103899.
[11]李冰. 沪深300股指预测——基于ARIMA模型和人工神经网络模型相结合的方法[D]. 广州:暨南大学,2018.
[12]李辉,赵玉涵. 基于DFS-BPSO-SVM的股票趋势预测方法[J]. 软件导刊,2017,16(12):147-151.
[13]XIAO J,ZHU X,HUANG C,et al. A new approach for stock price analysis and prediction based on SSA and SVM[J]. International Journal of Information Technology and Decision Making,2019,18(1):287-310.
[14]徐月梅,王子厚,吴子歆. 一种基于CNN-BiLSTM多特征融合的股票走势预测模型[J]. 数据分析与知识发现,2021,5(7):126-137.
[15]陈佳. RNN神经网络在股指预测中的应用研究[D]. 天津:天津科技大学,2019.
[16]林培光,周佳倩,温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展,2020,57(8):1769-1778.
[17]胡聿文. 基于优化LSTM模型的股票预测[J]. 计算机科学,2021,48(Suppl 1):151-157.
[18]DING G,QIN L. Study on the prediction of stock price based on the associated network model of LSTM[J]. International Journal of Machine Learning and Cybernetics,2020,11(6):1307-1317.
[19]SKEHIN T,CRANE M,BEZBRADICA M. Day ahead forecasting of FAANG stocks using ARIMA,LSTM networks and wavelets[C]//Proceedings for the 26th AIAI Irish Conference on Artificial Intelligence and Cognitive Science. Dublin:CEUR Workshop Proceedings,2018.
[20]MEHTAB S,SEN J. Stock price prediction using CNN and LSTM-based deep learning models[C]//Proceedings of the 2020 International Conference on Decision Aid Sciences and Application(DASA). Sakheer,Bahrain:IEEE,2020:447-453.
[21]CHEN T Q,GUESTRIN C. Xgboost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York,USA:Association for Computing Machinery,2016:785-794.