[1] KLINE A,AHNER D,HILL R. The weapon-target assignment problem[J]. Computers and Operations Research,2019,105:226-236.
[2]KLINE A G,AHNER D K,LUNDAY B J. Real-timeheuristic algorithms for the static weapon target assignment problem[J]. Journal of Heuristics,2019,25(3):377-397.
[3]ZHOU Y L,LI X B,ZHU Y F,et al. A discrete particle swarm optimization algorithm applied in constrained static weapon-target assignment problem[C]//Proceedings of the World Congress on Intelligent Control and Automation(WCICA),Guilin,China,2016:3118-3123.
[4]张迎新,徐元子,郭栋,等. 基于进化多目标优化的对地打击武器目标分配[J]. 电光与控制,2021,28(9):34-38.
[5]LAI C M,WU T H. Simplified swarm optimization with initialization scheme for dynamic weapon-target assignment problem[J]. Applied Soft Computing,2019,82:105542.
[6]CHANG T,KONG D,HAO N,et al. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization[J]. Applied Soft Computing,2018,70:845-863.
[7]XU W,CHEN C,DING S,et al. A bi-objective dynamic collaborative task assignment under uncertainty using modified MOEA/D with heuristic initialization[J]. Expert Systems with Applications,2020,140:112844
[8]王玮,程树昌,张玉芝. 基于遗传算法的一类武器目标分配方法研究[J]. 系统工程与电子技术,2008,30(9):1708-1711.
[9]刘陈曼,周凤星. 改进粒子群算法的舰载武器目标分配[J]. 火力与指挥控制,2018,43(11):72-76.
[10]张明双,徐克虎. 基于最小火力浪费的火力优化分配[J]. 电光与控制,2020,27(9):55-59.
[11]吴文海,郭晓峰,周思羽,等. 改进差分进化算法求解武器目标分配问题[J]. 系统工程与电子技术,2021,43(4):1012-1021.
[12]张进,郭浩,陈统. 基于可适应匈牙利算法的武器-目标分配问题[J]. 兵工学报,2021,42(6):1339-1344.
[13]武从猛,王公宝. 遗传-蚁群算法在目标分配问题中的应用研究[J]. 兵工自动化,2014,33(4):8-11.
[14]赵舵,唐启超,余志斌. 一种采用改进交叉熵的多目标优化问题求解方法[J]. 西安交通大学学报,2019,53(3):66-74.
[15]任超,张航,李洪双. 随机优化的改进交叉熵方法[J]. 北京航空航天大学学报,2018,44(1):205-214.
[16]任斌,丰镇平. 改进遗传算法与粒子群优化算法及其对比分析[J]. 南京师范大学学报(工程技术版),2002,2(2):14-20.
[17]HU L,YI G X,HUANG C,et al. Research on dynamic weapon target assignment based on cross-entropy[J]. Mathematical Problems in Engineering,2020:8618065
[18]YAO X,LIU Y,LIN G. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation,1999,3(2):82-102.
[19]TIAN Y,CHENG R,ZHANG X Y,et al. PlatEMO:a MATLAB platform for evolutionary multi-objective optimization educational forum[J]. IEEE Computational Intelligence Magazine,2017,12(4):73-87.