|Table of Contents|

Study on Modeling of Silicon Carbide MOSFET Based on Levenberg-Marquardt Algorithm(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2022年03期
Page:
30-37
Research Field:
电气工程
Publishing date:

Info

Title:
Study on Modeling of Silicon Carbide MOSFET Based on Levenberg-Marquardt Algorithm
Author(s):
Zhao Yixin12Liu Shoucheng12Yan Wei12Zhu Zhibo12Ju Ming12
(1.NARI School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Electrical Equipment EMC Engineering Laboratory,Nanjing Normal University,Nanjing 210023,China)
Keywords:
Silicon Carbide MOSFETstatic characteristic modelingdynamic behavior modelparasitic nonlinear capacitanceLevenberg-Marquardt algorithm
PACS:
TM23
DOI:
10.3969/j.issn.1672-1292.2022.03.005
Abstract:
In order to predict and analyze the switching behavior of silicon carbide MOSFET power devices more quickly and accurately,it is necessary to establish static and dynamic behavior models. The static model includes the transfer characteristic curves and the output characteristic curves at different temperatures,as well as the parasitic nonlinear capacitance curves. In this paper,an improved curve fitting formula based on the EKV formula and a new nonlinear capacitor fitting formula is proposed. The Macquart method is used for parameter fitting,which has faster modeling speed and smaller model errors. Non-ideal conditions are considered in the dynamic model,such as package parasitic inductance and parasitic nonlinear capacitance,and establishes the gate-source voltage,drain-source voltage,Schottky diode voltage,and drain current at each stage of the device turn-on and turn-off process. The differential equations of the circuit and the drain current,and then the state variables at the end of each stage are used as the initial conditions for the next stage. The fourth-order Runge-Kutta method is used to solve the numerical solution of the above-mentioned differential equations,and compared with the LTspice simulation waveform,the results show that the above-mentioned modeling method can describe the dynamic behavior of the device well.

References:

[1]PUSHPAKARAN B N,BAYNE S B,WANG G Y,et al. Fast and accurate electro-thermal behavioral model of a commercial SiC 1 200 V,80 mΩ power MOSFET[C]//IEEE Pulsed Power Conference. Austin,TX,USA,2015.
[2]DUAN Z,FAN T,WEN X,et al. Improved SiC power MOSFET model considering nonlinear junction capacitances[J]. IEEE Transactions on Power Electronics,2018,33(3):2509-2517.
[3]李川. 电机驱动系统中的碳化硅MOSFET行为模型及电磁兼容研究[D]. 成都:电子科技大学,2018.
[4]许明明,王佳宁,冯之健. 基于SPICE模型的SiC MOSFET静动态特性分析[J]. 电力电子技术,2017,51(9):28-30.
[5]肖婵娟,张豪,梁文才,等. 基于碳化硅MOSFET的器件建模与仿真[J]. 电力电子技术,2018,52(10):122-124.
[6]周志达,葛琼璇,赵鲁,等. 碳化硅器件建模与杂散参数影响机理[J]. 电机与控制学报,2020,24(1):27-37.
[7]郭浩波. 考虑温度特性的SiC MOSFET PSpice建模研究[D]. 北京:北京交通大学,2019.
[8]陈思彤. 基于模型的SiC功率MOSFET温升估计研究[D]. 哈尔滨:哈尔滨工业大学,2020.
[9]王艳. SiC MOSFET模型及短路特性分析[D]. 西安:西安理工大学,2020.
[10]段卓琳,张栋,范涛. SiC电机驱动系统传导电磁干扰建模及预测[J]. 电工技术学报,2020,35(22):4726-4738.
[11]徐文凯,朱俊杰,聂子玲,等. 全碳化硅功率模块开关瞬态特性及损耗研究[J]. 电机与控制应用,2019,46(5):100-106,119.
[12]CHUANG B,RUOBING L,HUI L. Prediction of electromagnetic interference noise in SiC MOSFET module[J]. IEEE Transactions on Circuits and Systems,2019,66(5):853-857.
[13]MANTOOTH H A,PENG K,SANTI E,et al. Modeling of wide bandgap power semiconductor devices—Part I[J]. IEEE Transactions on Electron Devices,2015,62(2):423-433.
[14]SANTI E,PENG K,MANTOOTH H A,et al. Modeling of wide-bandgap power semiconductor devices—Part II[J]. IEEE Transactions on Electron Devices,2015,62(2):434-442.
[15]XU Y,HONG L,ZHENG T Q,et al. Study on the pspice simulation model of SiC MOSFET base on its datasheet[C]//2015 IEEE 2nd International Future Energy Electronics Conference(IFEEC). Taipei,China,2015.
[16]MCNUTT T R,HEFNER A,MANTOOTH H A,et al. Silicon Carbide power MOSFET model and parameter extraction sequence[J]. IEEE Transactions on Power Electronics,2007,22(2):353-363.

Memo

Memo:
-
Last Update: 2022-09-15