|Table of Contents|

Steam Prediction of Central Air Conditioning Based on Hybrid Deep-learning Model(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2022年03期
Page:
53-62
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Steam Prediction of Central Air Conditioning Based on Hybrid Deep-learning Model
Author(s):
Wang Ke1Lu Huanda2Zheng Junhong1He Lili1
(1.School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China)(2.School of Computer and Data Engineering,NingboTech University,Ningbo 315100,China)
Keywords:
air conditioning steam consumptionconvolutions over volumesPredRNN++GRUspatial feature
PACS:
TP181
DOI:
10.3969/j.issn.1672-1292.2022.03.008
Abstract:
In order to solve the steam consumption prediction problem of several large central air-conditioning units,a hybrid deep-learning prediction model based on GRU and 3DConv-PredRNN++ is proposed. Aiming at the dynamic linkage relationship of multiple air conditioning units,the relationship between steam consumption of units is extracted by convolutions over volumes and PredRNN++method,which is used as a feature of spatial factors to participate in model prediction. In order to capture the overall trend and local variation of the steam consumption series, smooth process model,trend model and periodic model are used as model inputs in the data set. In order to improve the prediction performance of the model,a GRU is used to combine the external factor features and capture the temporal factor features. Finally,the model is constructed by parameter matrix fusion. Through comparison experiments with various prediction models,it is proved that the prediction accuracy of the model is superior and that it is necessary to extract spatial factors to participate in model prediction. Compared with the current model,the average standard energy consumption of this model is reduced by 60.09%.

References:

[1]CHOWDHURY H,CHOWDHURY T,HOSSAIN N,et al. Exergetic sustainability analysis of industrial furnace:a case study[J]. Environmental Science and Pollution Research,2021,28:12881-12888.
[2]杨裔. 中央空调节能技术综述[J]. 现代信息科技,2019(13):193-194.
[3]CHEN X,SHUAI C Y,WU Y,et al. Understanding the sustainable consumption of energy resources in global industrial sector:Evidences from 114 countries[J]. Environmental Impact Assessment Review,2021,90:106609.
[4]刘亚东. 造纸厂蒸汽消耗需求预测研究及预测系统开发[D]. 广州:华南理工大学,2013.
[5]刘文华. 基于机器学习的火力发电蒸汽量预测方法研究[D]. 太原:太原科技大学,2019.
[6]MOGHADASI M,OZGOLI H A,FARHANI F. Steam consumption prediction of a gas sweetening process with methyldiethanolamine solvent using machine learning approaches[J]. International Journal of Energy Research,2021,45(1):879-893.
[7]王梦柯. 大型制造企业蒸汽智能供应策略优化的研究与应用[D]. 杭州:浙江理工大学,2020.
[8]彭桐歆,韩勇,王程,等. 面向短时地铁客流量预测的混合深度学习模型[J]. 计算机工程,2022,48(5):297-305.
[9]ZHANG J B,ZHENG Y,QI D K. Deep Spatio-temporal residual networks for citywide crowd flows prediction[C]//AAAI'17:Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco,USA:AAAI Press,2016:1655-1661.
[10]CHO K,MERRIENBOER B V,GULCEHRE C,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Doha,Qatar:ACL,2014.
[11]查玉坤,张其林,赵永标,等. 基于三维卷积和CLSTM神经网络的水产养殖溶解氧预测[J]. 应用科学学报,2021,39(4):615-626.
[12]DIBA A,FAYYAZ M,SHARMA V,et al. Temporal 3D ConvNets:new architecture and transfer learning for Video classification[J/OL]. arXiv preprint arXiv:1711.08200,2017.
[13]WANG Y B,GAO Z F,LONG M S,et al. PredRNN++:towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[J/OL]. arXiv preprint arXiv:1804.06300,2018.
[14]国家市场监督管理总局,国家标准化管理委员会. 综合能耗计算通则:GB/T 2589-2020[S]. 北京:中国标准出版社,2020.
[15]简毅文,江亿. 住宅供暖空调能耗计算模式的研究[J]. 暖通空调,2005,35(2):11-14.
[16]JALAL M,JALAL H. Retracted:behavior assessment,regression analysis and support vector machine(SVM)modeling of waste tire rubberized concrete[J]. Journal of Cleaner Production,2020,273:122960.
[17]XU L,HOU L,ZHU Z Y,et al. Midterm prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm[J]. Energy,2021,222(1):119955.
[18]EAPEN J,VERMA A,BEIN D. Improved big data stock index prediction using deep learning with CNN and GRU[J]. International Journal of Big Data Intelligence,2021,7(4):202-210.
[19]陈聪,候磊,李乐乐,等. 基于GRU改进RNN神经网络的飞机燃油流量预测[J]. 科学技术与工程,2021,21(27):11663-11673.
[20]党建武,从筱卿. 基于CNN和GRU的混合股指预测模型研究[J]. 计算机工程与应用,2021,57(16):167-174.
[21]LIU L J,WANG L,YU Z. Remaining useful life estimation of aircraft engines based on deep convolution neural network and LightGBM combination model[J]. International Journal of Computational Intelligence Systems,2021,14:165.
[22]MUSLIM M A,DASRIL Y,ALAMSYAH A,et al. Bank predictions for prospective long-term deposit investors using machine learning LightGBM and SMOTE[J]. Journal of Physics:Conference Series,2021,1918(4):042143.
[23]WEI J,LI Z Q,PINKER R T,et al. Himawari-8-derived diurnal variations in ground-level PM2.5 pollution across China using the fast space-time Light Gradient Boosting Machine(LightGBM)[J]. Atmospheric Chemistry and Physics,2021,21(10):7863-7880.
[24]FARID M. Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading using artificial neural networks and Gaussian process regression[J]. International Journal of Fatigue,2022,155:106415.
[25]REN C H,YANG Y X,DONG X,et al. Prediction of the maximum temperature of sulfur-containing oil using gaussian process regression for hazards prevention[J]. International Journal of Performability Engineering,2018,14(12):2951-2959.

Memo

Memo:
-
Last Update: 2022-09-15