|Table of Contents|

Research and Application of Twin Proximal Least Squares Support Vector Regression Model Based on Gaussian Noise(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2022年04期
Page:
19-28
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Research and Application of Twin Proximal Least Squares Support Vector Regression Model Based on Gaussian Noise
Author(s):
Yuan Qiuyun1Zhang Shiguang2Liu Shiqin3Guo Shuangle4
(1.School of Information and Electronic Engineering,Shangqiu Institute of Technology,Shangqiu 476000,China)
(2.School of Information Engineering,Shandong Management University,Jinan 250357,China)
(3.College of Mathematics and Computer science,Hengshui University,Hengshui 053000,China)
(4.School of Information Engineering,Binzhou University,Binzhou 256600,China)
Keywords:
twin proximal least squares support vector regressionGaussian noisewind speed predictionequality constraint
PACS:
TP301
DOI:
10.3969/j.issn.1672-1292.2022.04.003
Abstract:
Twin proximal least squares support vector regression(TPLSSVR)is a new regression model designed on the basis of PLSSVR model and TSVR model's double hyperplane concept. In this paper,we use the above model framework to build the twin proximal least squares support vector regression model based on Gaussian noise. The least square method is introduced and the regularization terms b21 and b22 are added respectively. It transforms an inequality constraint problem into two simpler equality constraint problems,which not only improves the generalization ability,but also effectively improves the prediction accuracy. In order to solve the parameter selection problem of the model,the particle swarm optimization algorithm with fast convergence speed and good robustness is selected to optimize its parameters. The new model is applied to artificial data set and wind speed data set,the experimental results show that the model has better prediction effect.

References:

[1]VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York,USA:Springer NY,1995.
[2]CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297.
[3]SUYKENS J A K,VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters,1999,9(3):293-300.
[4]FUNG G,MANGASARIAN O L. Proximal support vector machine classifiers[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowlege Discovery and Data Mining. San Francisco,USA:ACM,2001.
[5]JAYADEVA,KHEMCHANDANI R,CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.
[6]PENG X J. TSVR:an efficient twin support vector machine for regression[J]. Neural Networks,2010,23(3):365-372.
[7]PENG X J,CHEN D. PTSVRs:regression models via projection twin support vector machine[J]. Information Sciences,2018,435:1-14.
[8]杨晓敏. 改进灰狼算法优化支持向量机的网络流量预测[J]. 电子测量与仪器学报,2021,35(3):211-217.
[9]叶黎明,陈素根. 基于粒子群算法的投影孪生支持向量机[J]. 淮北师范大学学报(自然科学版),2021,42(1):29-35.
[10]顾吉峰,王蓓. 基于改进粒子群算法的孪生支持向量机[J]. 计算机工程与设计,2020,41(11):3078-3082.
[11]DING S F,ZHANG X K,YU J Z. Twin support vector machines based on fruit fly optimization algorithm[J]. International Journal of Machine Learning and Cybernetics,2016,7(2):193-203.
[12]DING S F,AN Y X,ZHANG X K,et al. Wavelet twin support vector machines based on glowworm swarm optimization[J]. Neurocomputing,2017,225:157-163.
[13]张谢锴,丁世飞. 基于马氏距离的孪生多分类支持向量机[J]. 计算机科学,2016,43(3):49-53.
[14]SARTAKHTI J S,AFRABANDPEY H,SARAEE M. Simulated annealing least squares twin support vector machine(SA-LSTSVM)for pattern classification[J]. Soft Computing,2017,21(15):4361-4373.
[15]黄宏运,吴礼斌,李诗争. GA优化的SVM在量化择时中的应用[J]. 南京师范大学学报(工程技术版),2017,17(1):72-79.
[16]WANG K N,PEI H M,DING X S,et al. Robust proximal support vector regression based on maximum correntropy criterion[J]. Scientific Programming,2019(3):7102946.
[17]张仕光,周婷,刘超,等. 高斯噪声特性区间ν-支持向量回归机[J]. 山西大学学报(自然科学版),2020,43(4):880-884.
[18]余乐安. 基于最小二乘近似支持向量回归模型的电子商务信用风险预警[J]. 系统工程理论与实践,2012,32(3):508-514.
[19]HU Q H,ZHANG S G,YU M,et al. Short-term wind speed or power forecasting with heteroscedastic support vector regression[J]. IEEE Transactions on Sustainable Energy,2016,7(1):241-249.

Memo

Memo:
-
Last Update: 2022-12-15