[1]FAKHARI A,MOGHADAM A. Combination of classification and regression in decision tree for multi-labeling image annotation and retrieval[J]. Applied Soft Computing,2013,13(2):1292-1302.
[2]GAO W,ZHOU Z H. On the consistency of multi-label learning[C]//Proceedings of the 24th Annual Conference on Learning Theory. PMLR 19:341-358,2011.
[3]GU Q,LI Z,HAN J. Correlated multi-label feature selection[C]//Proceedings of the 20th ACM International Conference on Information and Knowledge Management. Glasgow,Scotland:Association for Computing Machinery,2011.
[4]DAI J H,XU Q. Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification[J]. Applied Soft Computing,2013,13(1):211-221.
[5]LIN Y J,HU Q H,LIU J H,et al. Multi-label feature selection based on neighborhood mutual information[J]. Applied Soft Computing,2016,38:244-256.
[6]SECHIDIS K,NIKOLAOU N,BROWN G. Information theoretic feature selection in multi-label data through composite likelihood[C]//Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition(SPR)and Structural and Syntactic Pattern Recognition(SSPR). Joensuu,Finland,2014.
[7]SPOLAOR N,CHERMAN E A,MONARD M C,et al. A comparison of multi-label feature selection methods using the problem transformation approach[J]. Electronic Notes in Theoretical Computer Science,2013,292:135-151.
[8]SPOLAOR N,MONARD M C,TSOUMAKAS G,et al. Label construction for multi-label feature selection[C]//2014 Brazilian Conference on Intelligent Systems. San Carlos,Venezuela,2014.
[9]SLAVKOV I,KARCHESKA J,KOCEV D,et al. ReliefF for hierarchical multi-label classification[J]. International Workshop on New Frontiers in Mining Complex Patterns. Springer,Cham,2013:148-161.
[10]GHARROUDI,ELGHAZEL,AUSSEM. A comparison of multi-label feature selection methods using the random forest paradigm[C]//Canadian Conference on Artificial Intelligence. Montreal,QC,Canada,2014.
[11]段洁,胡清华,张灵均,等. 基于邻域粗糙集的多标记分类特征选择算法[J]. 计算机研究与发展,2015,52(1):56-65.
[12]HU Q H,PEDRYCZ W,YU D R,et al. Selecting discrete and continuous features based on neighborhood error minimization[J]. IEEE Transactions on Systems,Man and Cybernetics,Part B,2009,40(1):137-150.
[13]GAO T L,JIA X H,JIANG R,et al. SaaS service combinatorial trustworthiness measurement method based on Markov Theory and cosine similarity[J]. Security and Communication Networks,2022:7080367.
[14]陈超逸,林耀进,唐莉,等. 基于邻域交互增益信息的多标记流特征选择算法[J]. 南京大学学报(自然科学),2020,56(1):30-40.
[15]ZHANG M L,PENA J M,ROBLES V. Feature selection for multi-label naive bayes classification[J]. Information Sciences,2009,179(19):3218-3229.
[16]ZHANG Y,ZHOU Z H. Multi-label dimensionality reduction via dependence maximization[J]. ACM Transactions on Knowledge Discovery from Data,2010,4(3):1-21.
[17]LEE J,KIM D W. Feature selection for multi-label classification using multivariate mutual information[J]. Pattern Recognition Letters,2013,34(3):349-357.
[18]卢舜,林耀进,吴镒潾,等. 基于多粒度一致性邻域的多标记特征选择[J]. 南京大学学报(自然科学),2022,58(1):60-70.
[19]FRIEDMAN M. A comparison of alternative tests of significance for the problem of m rankings[J]. The Annals of Mathematical Statistics,1940,11(1):86-92.
[20]NEMENYI P B. Distribution-free multiple comparisons[M]. Princeton,State of New Jersey:Princeton University,1963.