|Table of Contents|

Research and Application of Cross Sampling on Complex Network(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年01期
Page:
84-92
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Research and Application of Cross Sampling on Complex Network
Author(s):
Liu Shengjiu1Wu Xiaobing1Cao Xiaoping2Wang Ying1Ou Minghui1
(1.Big Data and Internet of Things School,Chongqing Vocational Institute of Engineering,Chongqing 402260,China) (2.School of Artifical Intelligence,Chongqing Creation Vocational College,Chongqing 402160,China)
Keywords:
complex networknetwork samplingcross samplingmixed samplingnetwork parameter
PACS:
TP391
DOI:
10.3969/j.issn.1672-1292.2023.01.011
Abstract:
Among the analysis and research of complex network, in view of the traditional network sampling being mainly on sample the nodes and edges of complex network independently, this paper firstly proposes cross sampling by sample the nodes or edges of the complex network twice independently, and then calculate the parameters of the original network by sampling network. On cross sampling, four cross sampling methods including point cross sampling, edge cross sampling, point mixed sampling and edge mixed sampling are analyzed and verified on ER, WS and BA network models. The results show that the average degree, average path length, network diameter, transitivity clustering coefficient, WS clustering coefficient, and network dimension of the original network can be calculated by cross sampling, while that the point mixed sampling is the best cross sampling method.

References:

[1]GUTMAN I. The energy of a graph[J]. Ber Math Statist Sekt Forschungsz Graz,1978,103:1-22.
[2]ADIGA C,BALAKRISHNAN R,SO W. The skew energy of a digraph[J]. Linear Algebra and Its Applications,2010,432:1825-1835.
[3]LIU J X,LI X L. Hermitian-adjacency matrices and Hermitian energies of mixed graphs[J]. Linear Algebra and Its Applications,2015,466:182-207.
[4]LIU S J,LI T R,ZHU J,et al. Network energy:a new energy of a graph[C]//2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering(ISKE2019). Dalian,China:IEEE,2019.
[5]LIU S J,LI T R,ZHANG X B,et al. On network energy of oriented graphs[C]//Proceedings of the 14th International FLINS Conference on Robotics and Artificial Intelligence/IEEE 15th International Conference on Intelligent Systems and Knowledge Engineering(FLINS 2020/ISKE 2020). Cologne,Germany:World Scientific,2020.
[6]刘胜久,李天瑞,谢鹏,等. 网络能量在混合图中的研究与应用[J]. 湖南大学学报(自然科学版),2021,48(6):105-111.
[7]倪伟平. 最大度是6 且不含有弦的小圈的可平面图的边染色[J]. 南京师大学报(自然科学版),2011,34(3):19-24.
[8]唐保祥,任韩. 几类图完美匹配的数目[J]. 南京师大学报(自然科学版),2010,33(3):1-6.
[9]陈轩泽,霍静,费峰,等. 基于PCA与ArcGIS网络分析的图书馆阅览室管理系统[J]. 南京师范大学学报(工程技术版),2012,12(2):57-63.
[10]李林,封志明,赵品彰,等. 一种基于散射参数测试的人工电源网络校准方法[J]. 南京师范大学学报(工程技术版),2011,11(2):4-8.
[11]张先迪,李正良. 图论及其应用[M]. 北京:高等教育出版社,2005.
[12]ERDÖS P,RENYI A. On random graphs I[J]. Publicationes Mathematicae,1959(6):290-297.
[13]WATTS D J,STROGATZ S H. Collective dynamics of ‘small-world'networks[J]. Nature,1998,393(6684):440-442.
[14]NEWMAN M E J,WATTS D J. Renormalization group analysis of the small-world network model[J]. Physics Letter A,1999,293(4/5/6):341-346.
[15]BARABÁSI A L,ALBERT R. Emergence of scaling in random networks[J]. Science,1999,286:509-512.
[16]刘胜久,李天瑞,珠杰,等. 具有双峰效应特性的复杂网络模型研究[J]. 复杂系统与复杂性科学,2017,14(1):46-51,102.
[17]刘胜久,李天瑞,洪西进,等. 基于矩阵运算的复杂网络构建方法[J]. 中国科学(信息科学),2017,46(5):610-626.
[18]朱大智,吴俊,谭跃进,等. 度秩函数——个新的复杂网络统计特征[J]. 复杂系统与复杂性科学,2006,3(4):28-34.
[19]WEI D J,LIU Q,ZHANG H X,et al. Box-covering algorithm for fractal dimension of weighted networks[J]. Scientific Reports,2013,3:3049.
[20]LIU J L,YU Z G,ANH V.Topological properties and fractal analysis of a recurrence network constructed from fractional Brownian motions[J]. Physical Review,E. Statistical,Nonlinear,and Soft Matter Physics,2014,89(3):032814.
[21]刘胜久,李天瑞,刘小伟. 网络维数:一种度量复杂网络的新方法[J]. 计算机科学,2019,46(1):51-56.
[22]LUCE R D,PERRY A D. A method of matrix analysis of group structure[J]. Psychometrika,1949,14(2):95-116.

Memo

Memo:
-
Last Update: 2023-03-15