|Table of Contents|

Research on the Simulation of Curling Competition Based on Pymunk(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年03期
Page:
19-26
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Research on the Simulation of Curling Competition Based on Pymunk
Author(s):
Liu GuojunZhou QiJin YeXiao Jingjie
(School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China)
Keywords:
computer simulation curling Pymunk curling strategy system simulation design
PACS:
TP391.9
DOI:
10.3969/j.issn.1672-1292.2023.03.003
Abstract:
Curling is a throwing sports competition on ice in teams. Because curling is greatly affected by factors such as the venue environment and temperature during the exercise, it is difficult and complicated to collect relevant data in the study of algorithm on curling strategies. Curling a Markov process with continuous action space, continuous state space and action execution uncertainty in mathematics leads to the fact that the algorithms must be researched and tested in a simulation environment before they are put into use. In order to facilitate the research of curling throwing strategy, we propose a simulation method of curling throwing, rotating, sliding and collision in curling sports based on the physics engine Pymunk. By entering the sliding speed and the angular speed, we can easily obtain the movement data of the curling after the throw. Compared with the data collected on site, the simulation system is proved to have the characteristics of collecting data conveniently and large collection volume, and can control the speed of both sides to throw the curling in real time to play the game of throwing strategy. The simulation results show that the simulation system is consistent with the expected analysis, and the simulation system is very close to the actual situation of curling.

References:

[1]LIU G J,TANG X L,CHENG H D,et al. A novel approach for tracking high speed skaters in sports using a panning camera[J]. Pattern Recognition,2009,42(11):2922-2935.
[2]LIU G J,TANG X,HUANG J,et al. Hierarchical model-based human motion tracking via unscented kalman filter[C]//IEEE International Conference on Computer Vision. Rio de Janeiro,Brazil:IEEE,2007.
[3]陈海辉. 乒乓球反弹轨迹的计算机仿真研究[J]. 当代体育科技,2019,9(36):21-22.
[4]宋昌江,丛晓丹,孙思文. 基于Unity3D的模拟滑雪机可视化系统设计与实现[J]. 自动化技术与应用,2021,40(3):158-161.
[5]卓霖,刘婷婷,刘箴,等. 疏散出口附近的人群踩踏仿真分析[J]. 计算机工程与应用,2022,58(11):1-9.
[6]季云峰,施之皓,王朝立,等. 基于视频识别的乒乓球发球裁判系统实验研究——针对抛球高度和抛球角度问题[J]. 计算机工程与应用,2016,52(10):207-212,246.
[7]李一澜,高平,石雷,等. 优秀轮椅冰壶运动员体能与技战术特征研究[C]//第十二届全国体育科学大会. 日照:武汉体育学院,2022:155-157.
[8]王学峰. 冰壶运动技术的数据采集与分析系统的研究与实现[D]. 成都:电子科技大学,2014.
[9]WON D O,MüLLER K R,LEE S W. An adaptive deep reinforcement learning framework enables curling robots with human-like performance in real-world conditions[J]. Science Robotics,2020,5(46):eabb9764.
[10]李丹丹,姜宇,金晶,等. 基于数字冰壶系统的人工智能实验教学设计与实践[J]. 中国现代教育装备,2022(7):1-3.
[11]ITO T,KITASEI Y. Proposal and implementation of “digital curling”[C]//2015 IEEE Conference on Computational Intelligence and Games. Taiwan,China:IEEE,2015:469-473.
[12]田雨,许明. 无碰撞冰壶运动轨迹仿真系统的研制[J]. 系统仿真学报,2019,31(3):494-501.
[13]SEMAGE B L,KARIMPANAL T G,RANA S,et al. Fast model-based policy search for universal policy networks[C]//2022 6th International Conference on Pattern Recognition. Mantreal,QC,Canada:IEEE,2022.
[14]IPE N K,CHATTERJEE S. An in-memory physics environment as a world model for robot motion planning[C]//Soft Computing:Theories and Applications. Singapore:Springer,2022:559-569.
[15]HARDO G,NOKA M,BAKSHI S. Accurate segmentation of bacterial cells using synthetic training data[J]. BMC:Biology,2022:453284.
[16]HAMID A,MUSTOFA,ADITAMA D,et al. Simulating the COVID-19 epidemic event and its prevention measures using python programming[J]. Indonesian Journal of Electrical Engineering and Computer Science,2022,26(1):278-288.
[17]杨玄烨. 基于Python的事件精灵组的特点及技术运用研究[J]. 电子元器件与信息技术,2022,6(2):185-187.
[18]SHEGELSKI M R. The motion of a curling rock:analytical approach[J]. Canadian Journal of Physics(S0008-4204),2000,78(9):857-864.
[19]MAENO N. Dynamics and curl ratio of a curling stone[J]. Sports Engineering,2014,17(1):33-41.
[20]王震. 冰壶机器人视觉检测与跟踪系统研究[D]. 哈尔滨:哈尔滨工业大学,2021.
[21]俸晟超,袁晓毅,徐欢腾. 冬奥项目知识——冰壶篇[J]. 青少年体育,2018(12):24-25.
[22]李永庆. 陆地冰壶运动价值及推广策略[J]. 体育科技文献通报,2022,30(3):196-198.
[23]卢从飞,陈亮. 竞技冰壶运动研究评述及启示[J]. 中国体育科技,2022,58(2):3-9.

Memo

Memo:
-
Last Update: 2023-09-15