|Table of Contents|

Age Operator Deep Sparse Fusion Extension of the Expression Recognition(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年03期
Page:
43-52
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Age Operator Deep Sparse Fusion Extension of the Expression Recognition
Author(s):
Chen BinFan FeiyanZhang Rui
(Informatization Office, Nanjing Normal University, Nanjing 210023, China)
Keywords:
expression recognition deep sparse fusion extension age operator machine learning convolutional neural network
PACS:
TP39
DOI:
10.3969/j.issn.1672-1292.2023.03.006
Abstract:
In order to solve the trait differences in expression characteristics of people at different ages, the age operator deep sparse fusion extended expression recognition model is proposed. The model uses the form of linear dictionary sequence as sparse input signal, the input object with linear combination of training set, and select the optimal solution, further by convolutional neural network convolution, pooling and full connection processing, through fusion extension strategy to solve the problem of data set similarity, insufficient quantity and uneven distribution, and on the basis of combining age operator as characteristic elements and expression features extraction and as the basis of classification decision. Through deep sparse fusion extension, the age operator anthropometric model, internal angle structure and skin wrinkles detection as expression feature extraction additional factors. The multiple data set experiment results prove the effectiveness and stability of the algorithm across data sets, and the representative across age expression classification algorithm transverse comparison proves the advantages of the algorithm. This method has good effects on the accuracy and robustness of cross-age expression recognition, and has certain research value and reference significance.

References:

[1]ZHANG T,ZHENG W M,CUI Z,et al. A deep neural network-driven feature learning method for multi-view facial expression recognition[J]. IEEE Transactions on Multimedia,2016,18(12):2528-2536.
[2]YUAN X H,XIE L J,ABOUELENIEN M. A regularized ensemble framework of deep learning for cancer detection from multi-class,inbalanced training data[J]. Pattern Recognition,2018,77:160-172.
[3]FANG B F,ZHANG Q,WANG H,et al. Personality driven task allocation for emotional robot team[J]. International Journal of Machine Learning and Cybernetics,2018,9(12):1955-1962.
[4]MALATESTA C Z,IZARD C E,CULVER C,et al. Emotion communication skills in young,middle-aged,and older women[J]. Psychol Aging,1987,2:193-203.
[5]SULLIVAN S,RUFFMAN T. Emotion recognition deficits in the elderly[J]. International Journal of Neuroscience,2004,114,403-432.
[6]GONCALVES A R,FERNANDES C,PASION R,et al. Effects of age on the identification of emotions in facial expressions:A meta-analysis[J]. Peer J,2018,6:e5278.
[7]DANTCHEVA A,ELIA P,ROSS A. What else does your biometric datareveal?A survey on soft biometrics[J]. IEEE Transactions on Information Forensic Security,2016,11(3):441-467.
[8]MACEDO J,COSTA F,JEFERSSON A,et al. A benchmark methodology for child pornography detection[C]//2018 31st Conference on Graphics,Patterns and Images. Parana,Brazil,2018.
[9]KANADA T,COHN J F,TIAN Y L,et al. Comprehensive database for facial expression analysis[C]//Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition. Grenoble,France:IEEE,2000:46-53.
[10]LUCEY P,COHN J F,KANADE T,et al. The Extended Cohn-Kanade Dataset(CK+):A complete dataset for action unit and emotion-specified expression[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops. San Francisco,CA,USA:IEEE,2010:94-101.
[11]LYONS M,AKAMATSU S,KAMACHI M,et al. Coding facial expressions with Gabor wavelets[C]//Proceeding Third IEEE International Conference on Automatic Face and Gesture Recognition. Nara,Japan:IEEE,2018:200-205.
[12]PANTIC M,VALSTAR M,RADEMAKER R,et al. Web-based database for facial expression analysis[C]//2015 IEEE International Conference on Multimedia and Expo. Amsterdam,Netherlands:IEEE,2005.
[13]EKMAN P,ROLLS E T,PERRETT D I,et al. Facial expressions of emotion:An old controversy and new findings[J]. Philosophical Transactions:Biological Sciences,335(1273):69.
[14]GUO G D,GUO R,LI X. Facial expression recognition influenced by human aging[J]. IEEE Transactions on Affective Computing,2013,4(3):291-298.
[15]WANG S F,WU S,GAO Z,et al. Facial expression recognition through modeling age-related spatial patterns[J]. Multimedia Tools and Applications,2016,75(7):3937-3954.
[16]MALATESTA-MAGAI C,JONAS R,SHEPARD B,et al. Type A behavior pattern and emotion expression in younger and older adults[J]. Psychology and Aging,1992,7(4):551-561.
[17]YANG D,ZHOU Q,WEN J. Interactive two-stream graph neural network for skeleton-based action recognition[J]. Journal of Electronic Imaging,2021,30(3):033025.
[18]ZHU D H,DU B,ZHANG L P. Two-stream convolutional net-works for hyperspectral target detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(8):6907-6921.
[19]TEJA R S P,TEJA K S,DUBEY S R,et al. Spontaneous facial micro-expression recognition using 3D spatiotemporal convolu-tional neural networks[C]//2019 International Joint Conference on Neural Networks. Budapest,Hungary,2019:1-8.
[20]ZACH C,POCK T,BISCHOF H. A duality based approach for realtime TV-L1 optical flow[C]//Joint Pattern Recognition Symposium. Berlin Heidelberg:Springer,2007:214-223.
[21]李勇,李小竹,蒋梦莹. 基于跨连接LeNet-5网络的面部表情识别[J]. 自动化学报,2018,44(1):176-182.
[22]GOYAL S J,UPADHYAY A K,JADON R S,et al. Reallife facical expression recognition systems:A review[J]. Smart Computing and Informatics,2018,77(1):311-331.
[23]WANG S F,LIU Z L,LÜ S L,et al. A natural visible and infrared facial expression database for expression recognition and emotion inference[J]. IEEE Transactions on Multimedia,2010,12(7):682-691.
[24]KELTNER D,EKMAN P. Facial Expression of Emotion[J]. Encyclopedia of Human Behavior,2012:173-183.
[25]孟昭兰. 情绪心理学[M]. 北京:北京大学出版社,2005.
[26]FU Y,LAM A,SATO I,et al. Adaptive spatial-spectral dictionary learning for hyperspectral image restoration[J]. Interna-tional Journal of Computer Vision,2017,122(2):228-245.
[27]陈斌,东一舟,朱晋宁. 非控场景下主成分稀疏表示与低秩分解的人脸识别[J]. 液晶与显示,2019,34(8):816-824.
[28]陈斌,朱晋宁,东一舟. 基于残差整流增强卷积神经网络的表情识别[J]. 液晶与显示,2020,35(12):1299-1308.
[29]SZEGEDY C,LIU W,JIA Y Q,et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston,Massachusetts,2015:1-9.
[30]陈斌,朱晋宁. 双流增强融合网络微表情识别[J]. 智能系统学报,2013,18(2):360-371.
[31]SYEDA A R,YAZEED Y G,AHMAD J,et al. Automated facial expression recognition and age estimation using deep learning[J]. Computers Materials & Continua,2022,71(3):5235-5252.
[32]JO L,RACHEL A R,EMILIE M F R,et al. Caricaturing can improve facial expression recognition in low-resolution images and age-related macular degeneration[J]. Journal of Vision,2019,19(6):1-22.
[33]廖海斌,徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展,2021,58(3):528-538.
[34]FERNANDO A F,KEVIN H D,SILVIA R R,et al. Facial masks and soft-biometrics:Leveraging face recognition CNNs for age and gender prediction on mobile ocular images[J]. The Institution of Engineering and Technology,2021,10(5):562-580.

Memo

Memo:
-
Last Update: 2023-09-15