|Table of Contents|

Research and Implementation of Diabetes Intelligent Question Answering System Based on LTP(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年03期
Page:
60-66
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Research and Implementation of Diabetes Intelligent Question Answering System Based on LTP
Author(s):
Yi Faling12Sun Xiaocui12Chen Shanshan1
(1.College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China)
(2.Engineering and Technology Research Center of Guangdong Universities-Real World Engineering and Technology Research Center of Medical Information, Guangzhou 510006, China)
Keywords:
diabetes knowledge graph Q&A system semantic keywords LTP natural language processing
PACS:
TP391
DOI:
10.3969/j.issn.1672-1292.2023.03.008
Abstract:
Through extensive collection of diabetes related questions actually raised by users on health websites, and comprehensive analysis of questions based on LTP natural language processing platform, build a classification dictionary of basic diagnosis and treatment, indicators, medication, diet, health care products, prevention and question(judgment)vocabulary of diabetes. The semantic keywords are extracted by word matching, dependency syntax analysis, and related word combination analysis. On this basis, the problem classification is carried out. At the same time, combined with the problem classification and the related decision tree, the knowledge graph of diabetes and the judgment process of the problem are constructed, which realizes the effective matching of questions and answers. The actual question and answer test results of the system show that the recognition rate is 91.3% and the accuracy rate is 83.6%.

References:

[1]中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020 年版)[J]. 中华内分泌代谢杂志,2021,37(4):315-409.
[2]何延,张宁. 智能医疗问答系统的设计与实现[J]. 中国医疗设备,2021,36(9):100-103,108.
[3]庄莉,苏江文,卢伟龙,等. 专业领域智能问答系统设计及应用[J]. 电子技术与软件工程,2022(4):210-213.
[4]刘佳,王路路. 标准化服务智能问答系统研究[J]. 信息技术与标准化,2022(10):88-92.
[5]侯梦薇,卫荣,陆亮,等. 知识图谱研究综述及其在医疗领域的应用[J]. 计算机研究与发展,2018,55(12):2587-2599.
[6]谭威,刘成良. 基于知识图谱和模型融合的医疗问答系统的构建[J]. 中华医学图书情报杂志,2021,30(11):1-9.
[7]贾丽娜,陈恒,李冠宇. 基于注意力混合模型的中文医疗问答匹配[J]. 计算机应用与软件,2021,38(11):148-154.
[8]吴丹,周作建. 基于知识图谱的心血管疾病智能问答系统[J]. 软件导刊,2022,21(3):160-164.
[9]洪海蓝,李文林,杨涛,等. 基于知识图谱的海洋中药智能问答系统的设计与实现[J/OL]. 世界科学技术-中医药现代化[2023-07-15]. https://kns.cnki.net/kcms/detail//11.5699.r.20230112.1159.003.html.
[10]吴宗友,白昆龙,杨林蕊,等,电子病历文本挖掘研究综述[J]. 计算机研究与发展,2021,58(3):513-527.
[11]郑捷. NLP汉语自然语言处理原理与实践[M]. 北京:电子工业出版社,2017.
[12]KONG Z,YUE C X,SHI Y,et al. Entity extraction of electrical equipment malfunction text by hybrid NLP algorithm[J]. IEEE Access,2021(9):40216-40226.

Memo

Memo:
-
Last Update: 2023-09-15