|Table of Contents|

Research and Analysis on Psychological Health Problems of College Students Based on Improved BiLSTM Algorithm(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年04期
Page:
43-49
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Research and Analysis on Psychological Health Problems of College Students Based on Improved BiLSTM Algorithm
Author(s):
Gao Xingyu12Shi Jiaojie12Chen Jian3
(1.Zhejiang Provincial Institute of Culture and Tourism Development,Hangzhou 311231,China)
(2.School of Hotel Management,Zhejiang Tourism Vocational College,Hangzhou 311231,China)
(3.Zhejiang University of Technology,Hangzhou 310023,China)
Keywords:
college student psychologysentiment analysisdeep learningBiLSTMword vector
PACS:
TP391
DOI:
10.3969/j.issn.1672-1292.2023.04.006
Abstract:
With the more and more wide application of deep learning models,the accuracy of the models continues to improve,providing feasibility for intelligent research and judgment systems. The psychological behavior of college students have both explicitness and implicitness. At present,implicit information is often overlooked in the process of psychological counseling. In order to extract implicit information more effectively,this paper uses the deep learning method to extract the psychological characteristics of college students' psychological interview data,and constructs an intelligent analysis algorithm for college students' psychological counseling data. In order to deepen the emotional orientation in the word vector,this paper uses the BERT model to replace the traditional Word2vec model. And the BiLSTM algorithm is used to strengthen the correlation between contexts. Experiments prove that the algorithm effectively obtains metaphorical and low-frequency semantic information in the process of psychological counseling,classifies psychological counseling data(positive emotion and negative emotion),and accurately warns the interview data of negative emotions.

References:

[1]俞国良,王浩. 构建新时代心理健康教育新格局[N]. 中国社会科学报,2021-12-09(007).
[2]黄潇潇,张亚利,俞国良. 2010~2020中国内地大学生心理健康问题检出率的元分析[J]. 心理科学进展,2022,30(5):991-1004.
[3]赵志川. 大学生心理咨询与心理健康教育概述——评《大学生心理咨询与心理健康教育》[J]. 中国教育学刊,2023,362(6):127.
[4]陈爱平. 高职院校学生心理健康教育现状与实施策略探究[J]. 创新创业理论研究与实践,2021,4(9):58-59.
[5]刘潇,张磊. 高校辅导员谈心谈话工作开展探究[J]. 教育理论与实践,2020,40(6):41-43.
[6]原多多. 产品评论文本的情感分析方法研究[D]. 兰州:兰州财经大学,2019.
[7]姚天昉,程希文,徐飞玉,等. 文本意见挖掘综述[J]. 中文信息学报,2008,22(3):71-80.
[8]钟丁媛,高峥洲,金皓辰,等. 基于NLP文字处理的评论有用性探究[J]. 科技风,2020(31):150-153.
[9]陈颖,肖仲喆. 离散标签与维度空间结合的语音数据库设计[J]. 声学技术,2018,37(4):380-387.
[10]WIEBE J M,BRUCE R F,O'HARA T P. Development and use of a gold-standard data set for subjectivity classifications[C]//Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,USA:ACL,1999:246-253.
[11]KAMAL A. Subjectivity classification using machine learning techniques for mining feature-opinion pairs from web opinion sources[J/OL]. arXiv Preprint arXiv:1312.6962,2013.
[12]SCHOUTEN K,FRASINCAR F,DE JONG F. Commit-P1wp3:a co-occurrence based approach to aspect-level sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation(SemEval 2014).Dublin,Ireland:ACL,2014.
[13]肖海艳. 基于深度学习的在线教师课程评论情感分析模型[J]. 电子设计工程,2023,31(6):39-42.
[14]WANI T M,GUNAWAN T S,QADRI S A A,et al. A comprehensive review of speech emotion recognition systems[J]. IEEE Access,2021,9:47795-47814.
[15]柴源. 基于LSTM和Word2vec的图书评论文本情感分析研究[J]. 信息技术,2022,46(7):59-64.
[16]MIKOLOV T,CHEN K,CORRADO G,et al. Efficient estimation of word representations in vector space[J/OL]. arXiv Preprint arXiv:1301.3781,2013.
[17]谢思雅,施一萍,胡佳玲,等. 基于BiLSTM-ATT的微博用户情感分类研究[J]. 传感器与微系统,2021,40(2):26-29.
[18]DEVLIN J,CHANG M W,LEE K,et al. BERT:pre-training of deep bidirectional transformers for language understanding[J/OL]. arXiv Preprint arXiv:1810.04805,2018.
[19]ZHANG C,LI Q C,SONG D W. Syntax-aware aspect-level sentiment classification with proximity-weighted convolution network[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in information Retrieval. New York,USA:ACM,2019:1145-1148.
[20]CORCORAN C M,CARRILLO F,FERNÁNDEZ-SLEZAK D,et al. Prediction of psychosis across protocols and risk cohorts using automated language analysis[J]. World Psychiatry:Official Journal of the World Psychiatric Association(WPA),2018,17(1):67-75.
[21]STARLET B A,BEN B P,LEENA M. Utterance and syllable level prosodic features for automatic emotion recognition[C]//Proceedings of the 2018 IEEE Recent Advances in Intelligent Computational Systems(RAICS). Thiruvananthapuram,India:IEEE,2018:31-35.
[22]TADESSE M M,LIN H F,XU B,et al. Detection of suicide ideation in social media forums using deep learning[J]. Algorithms,2019,13(1):7.
[23]GREFF K,SRIVASTAVA R K,KOUTNÍK J,et al. LSTM:a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems,2016,28(10):2222-2232.

Memo

Memo:
-
Last Update: 2023-12-15