[1]张重生,陈杰,李岐龙,等. 深度对比学习综述[J]. 自动化学报,2023,49(1):15-39.
[2]黄界生. 基于深度学习的计算机视觉中图像检索算法研究[J]. 信息技术与信息化,2022(9):181-184.
[3]朱鹏飞,张琬迎,王煜,等. 考虑多粒度类相关性的对比式开放集识别方法[J]. 软件学报,2022,33(4):1156-1169.
[4]DWIBEDI D,AYTAR Y,TOMPSON J,et al. With a little help from my friends:Nearest-neighbor contrastive learning of visual representations[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal,Canada:IEEE,2021.
[5]HE K M,FAN H Q,WU Y X,et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle,USA:IEEE,2020.
[6]SCHIAPPA M C,RAWAT Y S,SHAH M. Self-supervised learning for videos:A survey[J]. ACM Computing Surveys,2023,55(13s):288.
[7]GRILL J B,STRUB F,ALTCH? F,et al. Bootstrap your own latent:A new approach to self-supervised learning[J]. Advances in Neural Information Processing Systems,2020,33:21271-21284.
[8]CHEN T,KORNBLITH S,NOROUZI M,et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning(ICML2020). Online:ICML,2020.
[9]游文霞,申坤,杨楠,等. 基于AdaBoost集成学习的窃电检测研究[J]. 电力系统保护与控制,2020,48(19):151-159.
[10]周登文,刘子涵,刘玉铠. 基于像素对比学习的图像超分辨率算法[J]. 自动化学报,2024,50(1):181-193.
[11]LI H F,LI Y,ZHANG G,et al. Global and local contrastive self-supervised learning for semantic segmentation of HR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:5618014.
[12]ZHANG Y Z,LIU J J,SHEN W J. A review of ensemble learning algorithms used in remote sensing applications[J]. Applied Sciences,2022,12(17):8654.
[13]牟卿志,李玉婷,孙宗升,等. 集成学习算法在图像质量评估中的应用[J]. 智能计算机与应用,2023,13(10):147-150.
[14]BISWAS M,BUCKCHASH H,PRASAD D K. pNNCLR:Stochastic pseudo neighborhoods for contrastive learning based unsupervised representation learning problems[J]. Neurocomputing,2024,593:127810.
[15]LEBAILLY T,STEGM?LLER T,BOZORGTABAR B,et al. Adaptive similarity bootstrapping for self-distillation based representation learning[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision(ICCV). Paris,France:IEEE,2023.
[16]GE C J,WANG J L,TONG Z,et al. Soft neighbors are positive supporters in contrastive visual representation learning[EB/OL].(2023-03-30)[2024-04-28]. https://doi.org/10.48550/arXiv.2303.17142.
[17]MIENYE I D,SUN Y X. A survey of ensemble learning:Concepts,algorithms,applications,and prospects[J]. IEEE Access,2022,10:99129-99149.
[18]FAN D,YANG D,LI X,et al. Look globally and locally:Inter-intra contrastive learning from unlabeled videos[C]//ICLR 2023 Workshop on Mathematical and Empirical Understanding of Foundation Models. Kigali,Rwanda:ICLR,2023.
[19]POWERS D M W. Evaluation:From precision,recall and F-measure to ROC,informedness,markedness & correlation[J]. Journal of Machine Learning Technology,2011,2(1):37-63.
[20]HELBER P,BISCHKE B,DENGEL A,et al. EuroSAT:A novel dataset and deep learning benchmark for land use and land cover classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2019,12(7):2217-2226.
[21]ZHOU W X,NEWSAM S,LI C M,et al. PatternNet:A benchmark dataset for performance evaluation of remote sensing image retrieval[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,145:197-209.