|Table of Contents|

Research and Preparation of Anti-Flocculation Polycarboxylate Superplasticizer(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2025年01期
Page:
30-37
Research Field:
化学工程与技术
Publishing date:

Info

Title:
Research and Preparation of Anti-Flocculation Polycarboxylate Superplasticizer
Author(s):
Jian Kai1Qian Hang1Yu Hao2Hu Kaiwei2Yang Weiben1
(1.School of Chemistry and Materials Science,Nanjing Normal University,Nanjing 210023,China)
(2.Jiangsu Bositong New Materials Co.,Ltd.,Nanjing 210000,China)
Keywords:
polycarboxylate superplasticizeranti-flocculationflocculantpolyacrylamidephosphate group
PACS:
TU528.042.2
DOI:
10.3969/j.issn.1672-1292.2025.01.004
Abstract:
Polyacrylamide(PAM)is an additive used in sand production. Its residue interferes with the performance of concrete admixtures. A new polyether macromonomer(diethylene glycol polyethylene glycol vinyl ether,GPEG)is used to react with small monomers such as acrylic acid,2-methyl-2-acrylate-2-hydroxyethyl ester phosphate,etc.,to synthesize D-PCE,an anti-flocculating polycarboxylate superplasticizer. Through the systematic optimization of the acid to ether ratio,phosphate group dosage,chain transfer agent dosage,oxidant dosage,reductant dosage,the reaction temperature and the feeding time in the polymerization process,the optimal anti-flocculation superplasticizer is compared with the commercially available superplasticizer. The structure and reaction mechanism of the synthesized products are investigated by infrared spectroscopy and 1H NMR spectroscopy. The results show that the anti-flocculating superplasticizer has better fluidity and retention in cement mortar containing flocculant PAM than the commercially available superplasticizer.

References:

[1]MEZHOV A,KOVLER K. Effect of sodium lignosulfonate superplasticizer on the early hydration of cement with different contents of cubic C3A[C]//Proceedings of the 4th International Conference on Innovative Materials,Structures and Technologies(IMST 2019). Riga,Latvia:IOP,2019.
[2]杨冲,乔敏,张敏,等. 新型改性萘系减水剂的制备与性能研究[J]. 广东化工,2019,46(18):37-39.
[3]温兆龙,蒋元海,刘洋,等. 聚羧酸减水剂与水泥及矿物掺合料适应性研究[J]. 江苏建材,2022(5):12-13.
[4]陆智明,仲以林,张健. 几种减水剂的性能对比及应用[J]. 广东建材,2013,29(11):18-20.
[5]潘祖伟,刘艳云. 机制砂石粉含量对混凝土的强度影响[J]. 四川水泥,2018(11):324.
[6]江小红,宋康,张书博. 机制砂的发展及应用与存在问题探讨[J]. 甘肃科技,2011,27(1):82-83.
[7]陈家珑. 我国机制砂石行业的现状与展望[J]. 混凝土世界,2011(2):62-64.
[8]毛永琳,朱江,杨勇,等. 机制砂中的石粉对水泥浆体流动性和干燥收缩的影响[J]. 混凝土,2019(2):76-79.
[9]彭文彬,张荣华,吴鑫. 高品质机制砂制备低胶材混凝土的试验研究[J]. 混凝土世界,2021(10):56-60.
[10]廉慧珍. 砂石质量是影响混凝土质量的关键[J]. 混凝土世界,2010(8):28-32.
[11]邱小云. 智能控制系统在砂石骨料行业中的应用[J]. 现代制造技术与装备,2021,57(2):199-200.
[12]刘兴龙. 商品混凝土常见工程事故及分析[J]. 福建建材,2020(2):113-115.
[13]杨林,李从号. 絮凝剂(PAM)对水泥(胶材)净浆及混凝土性能的影响[J]. 混凝土世界,2021(4):80-83.
[14]符惠玲,仲以林,韦朝丹,等. 絮凝剂在机砂中的残留量对混凝土性能的影响[J]. 广东建材,2020,36(6):10-12.
[15]夏国辉,毛永琳,张建纲,等. 聚丙烯酰胺对水泥浆体流动度的影响机理研究[J]. 混凝土与水泥制品,2023(7):35-38.
[16]王国锋,张华,郑宝春,等. 一种拌制混凝土中水洗机制砂残留絮凝剂的降解方法:中国,CN113336462A[P]. 2021-07-05.
[17]ZHAI H X,MA Y F,ZHANG J,et al. Effect of clay content on plastic shrinkage cracking of cementitious materials[J]. Construction and Building Materials,2022,342:127989.
[18]MATTHIAS W,LEI L. Influence of side chain length of MPEG-based polycarboxylate superplasticizers on their resistance towards intercalation into clay structures[J]. Construction and Building Materials,2021,281:122621.
[19]ILG M,PLANK J. Non-adsorbing small molecules as auxiliary dispersants for polycarboxylate superplasticizers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,587:124307.
[20]陈文林. 水泥粉煤灰稳定碎石基层配合比设计及施工[J]. 中国高新科技,2020(14):50-51.
[21]STECHER J,PLANK J. Novel concrete superplasticizers based on phosphate esters[J]. Cement and Concrete Research,2019,119:36-43.
[22]VO M L,PLANK J. Dispersing effectiveness of a phosphated polycarboxylate in α- and β-calcium sulfate hemihydrate systems[J]. Construction and Building Materials,2020,237:117731.
[23]QI H H,TANG D J,MA B G,et al. Influence of H3PO4 and H2PO-4 on the performance of PCE in hemihydrate gypsum pastes[J]. Construction and Building Materials,2023,394:132062.
[24]解利荣,张光华,董勋,等. 不同磷酸酯单体的EPEG型聚羧酸减水剂的制备及抗泥性能[J]. 精细化工,2022,39(11):2371-2376.
[25]张志勇,杨勇,周栋梁,等. 含膦酸基团聚羧酸减水剂的合成及性能研究[J]. 新型建筑材料,2022,49(4):6-10.
[26]于连林,蔡庆杰,范雷,等. 含有磷酸官能团的聚羧酸减水剂的研究[C]//中国建材联合会混凝土外加剂分会第十三次会员代表大会论文集. 江门,中国:中国硅酸盐学会,中国建材联合会,2012.
[27]?ZEN S,ALTUN S G,MARDANI-AGHABAGLOU A. Effect of the polycarboxylate based water reducing admixture structure on self-compacting concrete properties:Main chain length[J]. Construction and Building Materials,2020,255:119360.
[28]CHOMYN C,PLANK J. Impact of different synthesis methods on the dispersing effectiveness of isoprenol ether-based zwitterionic and anionic polycarboxylate(PCE)superplasticizers[J]. Cement and Concrete Research,2019,119:113-125.
[29]YANG H J,PLANK J,SUN Z P. Investigation on the optimal chemical structure of methacrylate ester based polycarboxylate superplasticizers to be used as cement grinding aid under laboratory conditions:Effect of anionicity,side chain length and dosage on grinding efficiency,mortar workability and strength development[J]. Construction and Building Materials,2019,224:1018-1025.
[30]ZHOU T F,DUAN H T,LI Z Z,et al. Synthesis of high concentration polycarboxylate superplasticizers via a photoinitiated one-pot method[J]. European Polymer Journal,2023,198:112435.
[31]LI S M,PANG H,ZHANG J F,et al. Synthesis and performance of a novel amphoteric polycarboxylate superplasticizer with hydrolysable ester group[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,564:78-88.
[32]XU Y R,LIU X,JIANG M H,et al. Effect of competitive hydrolysis of diester in polycarboxylate superplasticizer on the fluidity of cement paste[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,671:131691.
[33]曾珣,孙友,敖凡,等. 新型聚羧酸高性能减水剂的合成及分散性研究[J]. 山东化工,2021,50(19):12-13.
[34]胡娜,于佳,王庆丰,等. 高性能聚羧酸减水剂的常温合成及性能研究[J]. 广东建材,2023,39(2):2-5.
[35]刘冠杰,王自为,任建国,等. 聚羧酸减水剂聚醚大单体的应用研究进展[J]. 日用化学品科学,2018,41(10):13-16.
[36]DINARI M,ROGHANI N. Effect of triazine based silane coupling agent modified LDH on the thermal and mechanical properties of PVC based nanocomposites[J]. Journal of Polymer Research,2021,28:320.
[37]范艳层,张宁,郝挺宇,等. 滴加工艺对聚羧酸减水剂分子构象及其性能的影响[J]. 新型建筑材料,2016,43(4):97-99.
[38]MA B G,PENG Y,TAN H B,et al. Effect of polyacrylic acid on rheology of cement paste plasticized by polycarboxylate superplasticizer[J]. Materials(Basel),2018,11(7):1081.
[39]LI G X,HE T S,HU D W,et al. Effects of two retarders on the fluidity of pastes plasticized with aminosulfonic acid-based superplasticizers[J]. Construction and Building Materials,2012,26(1):72-78.
[40]ZHANG G,LI G X,LI Y C. Effects of superplasticizers and retarders on the fluidity and strength of sulphoaluminate cement[J]. Construction and Building Materials,2016,126:44-54.
[41]PLANK J,WINTER C. Competitive adsorption between superplasticizer and retarder molecules on mineral binder surface[J]. Cement and Concrete Research,2008,38(5):599-605.
[42]LESAGE K,CIZER ?,DESMET B,et al. Plasticising mechanism of sodium gluconate combined with PCE[J]. Advances in Cement Research,2015,27(3):163-174.
[43]WU Y H,HE T S,SONG X F,et al. Effect of sodium gluconate on polynaphthalene sulfonate adsorption[J]. Advances in Cement Research,2011,23(5):249-254.

Memo

Memo:
-
Last Update: 2025-03-15