|Table of Contents|

Evaluation and Source Analysis of Heavy Metal Pollution in Soil of Acidic Red Soil Tea-Producing Area(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2025年01期
Page:
38-44
Research Field:
环境科学与工程
Publishing date:

Info

Title:
Evaluation and Source Analysis of Heavy Metal Pollution in Soil of Acidic Red Soil Tea-Producing Area
Author(s):
Tan Huarong1Wang Yusi1Shi Kaipian2Dong Ting1Yao Youru13
(1.School of Geography and Tourism,Anhui Normal University,Wuhu 241003,China)
(2.School of Environment,Nanjing Normal University,Nanjing 210023,China)
(3.Key Laboratory of Earth Surface Processes and Response in the Yangtze-Huaihe River Basin of Anhui Province,Wuhu 241003,China)
Keywords:
heavy metaltea plantation soilpollution assessmentsource analysisAnxi
PACS:
X53
DOI:
10.3969/j.issn.1672-1292.2025.01.005
Abstract:
Heavy metal pollution in tea garden soil directly impacts the quality of tea leaves in tea-producing regions,consequently influencing human health. In this paper,the surface soil of a tea-producing area in Anxi County,Quanzhou City,Fujian Province,is the focus of the research. The distribution characteristics of Pb,Zn,Cu,Cr,Ni,Co,Mn and Fe in tea garden soil are comprehensively analyzed through indoor experiments. The study also utilizes the probability matrix decomposition(PMF)model to explore the sources of pollutants. The results indicate that the mean contents of Pb,Zn,Co,and Mn in the red soil in the study area exceed 1.38,1.25,1.50,and 1.86 times the background value of the soil in Fujian Province,respectively,indicating significant accumulation. The level of heavy metal pollution in the soil in the study area is relatively low. Apart from moderate pollution of Pb,Zn,and Mn at a few sample points,the other heavy metals are mostly categorized as non-polluted or lightly polluted. PMF modeling reveals that the heavy metals in the red soil of the tea plantation originated from four pollution sources:transportation,mining,natural factors,and agriculture,contributing 21.89%,25.82%,27.76%,and 24.52%,respectively.

References:

[1]JU Y W,LUO Z W,BI J,et al. Transfer of heavy metals from soil to tea and the potential human health risk in a regional high geochemical background area in southwest China[J]. Science of the Total Environment,2024,908:168122.
[2]TAO C J,SONG Y X,CHEN Z,et al. Geological load and health risk of heavy metals uptake by tea from soil:What are the significant influencing factors?[J]. CATENA,2021,204:105419.
[3]ZHANG W H,YAN Y,YU R L,et al. The sources-specific health risk assessment combined with APCS/MLR model for heavy metals in tea garden soils from south Fujian Province,China[J]. CATENA,2021,203:105306.
[4]崔莹莹,周波,陈义勇,等. 广东茶区土壤肥力时空变化分析与综合评价[J]. 中国农学通报,2023,39(1):85-95.
[5]唐俊贤,王培娟,俄有浩,等. 中国大陆茶树种植气候适宜性区划[J]. 应用气象学报,2021,32(4):397-407.
[6]梅宇,梁晓. 2021年中国茶叶生产与内销形势分析[J]. 中国茶叶,2022,44(4):17-22.
[7]HU C L,ZHANG X Y,ZHAN N,et al. Current status and health risk assessment of heavy metals contamination in tea across China[J]. TOXICS,2023,11(8):662.
[8]吴林土,高娜,朱有为,等. 茶树铅的吸收积累特征与茶园铅污染防控[J]. 浙江农业科学,2022,63(8):1664-1669.
[9]周国华,曾道明,贺灵,等. 福建铁观音茶园生态地球化学特征[J]. 中国地质,2015,42(6):2008-2018.
[10]弓秋丽,杨剑洲,王振亮,等. 海南省琼中县土壤-茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探,2023,47(3):826-834.
[11]孙境蔚,胡恭任,于瑞莲,等. 铁观音茶园土壤-茶树体系中重金属的生物有效性[J]. 环境化学,2020,39(10):2765-2776.
[12]莫晓丽,黄亚辉. 茶树主要逆境胁迫反应及其适应逆境的生理机制[J]. 茶叶学报,2021,62(4):185-190.
[13]WU X L,ZHANG D,WANG F,et al. Risk assessment of metal(loid)s in tea from seven producing provinces in China[J]. Science of the Total Environment,2023,856:159140.
[14]鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000.
[15]方凤满,武慧君,姚有如,等. 鸟粪对同里湿地公园土壤重金属及其形态的影响[J]. 生态学报,2018,38(8):2925-2933.
[16]邓家逸,余东,吴昊,等. 广西某铜冶炼场地土壤污染特征及源解析[J]. 环境科学学报,2023,43(11):290-299.
[17]陈振金,陈春秀,刘用清,等. 福建省土壤环境背景值研究[J]. 环境科学,1992,13(4):70-75.
[18]SHARMA S,MINAKSHI,KAUR I,et al. Spatiotemporal assessment of potentially toxic elements in sediments and roadside soil samples and associated ecological risk in Ropar wetland and its environs[J]. Environmental Monitoring and Assessment,2022,194(9):635.
[19]PAATERO P,TAPPER U. Positive matrix factorization:A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics,1994,5(2):111-126.
[20]夏建东,龙锦云,高亚萍,等. 巢湖沉积物重金属污染生态风险评价及来源解析[J]. 地球与环境,2020,48(2):220-227.
[21]HUANG J L,WU Y Y,SUN J X,et al. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with positive matrix factorization model[J]. Journal of Hazardous Materials,2021,415:125629.
[22]LIU P,WU Q M,WANG X K,et al. Spatiotemporal variation and sources of soil heavy metals along the lower reaches of Yangtze River,China[J]. Chemosphere,2022,291:132768.
[23]MEN C,LIU R M,XU L B,et al. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing,China[J]. Journal of Hazardous Materials,2020,388:121763.
[24]LIU X L,GAO W H,WEI T,et al. Distribution and source of heavy metals in Tibetan Plateau topsoil:New insight into the influence of long-range transported sources to the surrounding glaciers[J]. Environmental Pollution,2024,346:123498.
[25]付蓉洁,辛存林,于奭,等. 石期河西南子流域地下水重金属来源解析及健康风险评价[J]. 环境科学,2023,44(2):796-806.
[26]刘楠,唐莹影,陈盟,等. 基于APCS-MLR和PMF的铅锌矿流域土壤重金属来源解析[J]. 中国环境科学,2023,43(3):1267-1276.
[27]LI Y L,LI P Y,LIU L N. Source identification and potential ecological risk assessment of heavy metals in the topsoil of the Weining Plain(Northwest China)[J]. Exposure and Health,2022,14(2):281-294.
[28]陈盟,潘泳兴,黄奕翔,等. 阳朔典型铅锌矿区流域土壤重金属空间分布特征及来源解析[J]. 环境科学,2022,43(10):4545-4555.
[29]程金,张思文,黄文卿,等. 福建省耕地土壤pH空间分布及影响因素分析[J]. 中国农业大学学报,2022,27(12):90-101.
[30]安永龙,殷秀兰,李文娟,等. 张家口市万全区某种植区土壤重金属污染评价与来源分析[J]. 环境科学,2023,44(6):3544-3561.
[31]冯韶华,俞一帆,张旭峰,等. 中国农田土壤重金属污染源解析研究进展[J]. 环境污染与防治,2023,45(9):1300-1306.

Memo

Memo:
-
Last Update: 2025-03-15