[1]褚红燕,沈世斌.基于概率模型算法的设备运行状态分析[J].南京师范大学学报(工程技术版),2005,05(04):034-37.
 CHU Hongyan,SHEN Shibin.Analysis of Equipment Running Condition Based on the Probabilistic Model Arithmetic[J].Journal of Nanjing Normal University(Engineering and Technology),2005,05(04):034-37.
点击复制

基于概率模型算法的设备运行状态分析
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
05卷
期数:
2005年04期
页码:
034-37
栏目:
出版日期:
2005-12-30

文章信息/Info

Title:
Analysis of Equipment Running Condition Based on the Probabilistic Model Arithmetic
作者:
褚红燕;沈世斌;
南京师范大学电气与自动化工程学院, 江苏南京210042
Author(s):
CHU HongyanSHEN Shibin
School of Electrical and Automation Engineering,Nanjing Normal University,Jiangsu Nanjing 210042,China
关键词:
概率模型 概率神经网络 状态监测
Keywords:
probabilisticm ode l probab ilistic neura l ne tw orks condition mon itoring
分类号:
TH17
摘要:
从设备状态动态变化的本质出发,采用概率神经网络方法构建设备状态概率模型,描述设备从正常到故障的全过程.通过对神经网络结构的分析和主要模型参数的计算,以设备运行历史数据作为网络样本点,在模型数据预处理的基础上建立了设备的概率模型,该模型能较好地反映机械设备的运行状态,通过现场数据的分析,证明了该模型的合理性和正确性.
Abstract:
Based on the essence o f dynam ic evo lution o f equ ipm en t condition, accord ing to probab ilistic neura l ne-t w orks ( PNN), a probab ility mode l of equ ipm ent cond ition is adopted to describe thewho le process o f equipment evolution from norm a l to fault in the paper. By ana ly zing N eural Netw ork construc tion, ca lcu lating the m a in m odel param eter and using them achine h isto ry da ta as the netw ork samp le, w e establish the probab ilitym ode l of m ach ine w ith the pretreatm ent m ode l data as a basis. The m ach ine equ ipm ent cond ition is w ell reflected by the probab ility m ode.l The reasonability and correctness o f them ode l are proved by analyzing the machine h istory da ta

参考文献/References:

[ 1] Dona ld F Specht. Probab ilistic neura l netwo rks and the ploynom ia l ada line as com plem entary techniques for c lassifica tion [ J]. IEEE T ransactions on Neura l Ne tw orks, 1990, 1( 1): 111 -121.
[ 2] 徐光华, 屈梁生. 基于概率神经网络的机组状态多步预报方法[ J]. 西安交通大学学报: 自然科学版, 1999, 33( 7): 85- 87.
[ 3] 叶志峰, 孙健国. 基于概率神经网络的发动机故障诊断[ J]. 航空学报, 2002, 23( 2) : 155 -157.
[ 4] B ibb Ca in J. An im proved probab ilistic neura l netwo rks and its pe rfo rm ance re lative to otherm ode l [ C] / / App l-i cation of Artificia lNeural Netwo rks. SPIE Press, 1990.
[ 5] 邱立鹏. 设备剩余寿命的预测与分析[ D]. 大连: 大连理工大学, 2000.
[ 6] 高洪青. 基于概率模型的设备状态自适应评估与预测技术[ D]. 西安: 西安交通大学, 2003.

相似文献/References:

[1]陈春玲,商子豪.基于AdaBoost和概率神经网络的入侵检测算法[J].南京师范大学学报(工程技术版),2008,08(04):021.
 Chen Chunling,Shang Zihao.Algorithm of Network Intrusion Detection Based on AdaBoost and PNN[J].Journal of Nanjing Normal University(Engineering and Technology),2008,08(04):021.

备注/Memo

备注/Memo:
作者简介: 褚红燕( 1979-) , 女, 助教, 主要从事机电控制方面的教学与研究. E-m a il:chy- 790412@ 163. com
更新日期/Last Update: 2013-04-29