[1]魏慧荣,许建华.最小VC维分类器的一种实现方法[J].南京师范大学学报(工程技术版),2008,08(01):075-79.
 Wei Huirong,Xu Jianhua.An Implementation Method for Minimal VC Dimensional Classifier[J].Journal of Nanjing Normal University(Engineering and Technology),2008,08(01):075-79.
点击复制

最小VC维分类器的一种实现方法
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
08卷
期数:
2008年01期
页码:
075-79
栏目:
出版日期:
2008-03-30

文章信息/Info

Title:
An Implementation Method for Minimal VC Dimensional Classifier
作者:
魏慧荣;许建华;
南京师范大学数学与计算机科学学院, 江苏南京210097
Author(s):
Wei HuirongXu Jianhua
School of Mathematics and Computer Science,Nanjing Normal University,Nanjing 210097,China
关键词:
支持向量机 核函数参数 分解算法 复形调优法
Keywords:
support vector m ach ines kerne l functiona l param eter decompositional m ethod com plex optim ization m ethod
分类号:
O234
摘要:
通常在支持向量机算法中核函数参数是事先选定好的,而最小VC维分类器的非线性约束规划问题中包含RBF核的参数,在算法执行中可以自适应地确定.综合复形调优法、罚函数法及梯度法,提出了一种最小VC维分类器的实现方法.该实现方法在保证分类器有较高分类性能的前提下,可以以较快的速度处理较大的样本集.针对4个基准数据集,将该方法与SVMlight算法进行了比较,试验结果表明该最小VC维分类器的实现方法在分类精度与计算时间上都有一定的优势.
Abstract:
In support o f vectorm ach ine the param eters o f kerne l function have to be adjusted in advance. H owever, the constra ined non linear prog ramm ing of m in im al VC d im ensiona l c lassifie r invo lves the param eter o f RBF kerne,l w hich could be determ ined adaptive ly. In this paper, a fast im plem entation m ethod based on the com plex optim iza tion m ethod, pena lty func tion me thod and grad ient descentm e thod is designed to so lve such a nonlinea r problem. Them ethod has no t on ly good perform ance o f c lassification, but a high speed to dea l w ith la rge data sets. The expe rim en tal resu lts on four benchm ark data se ts demonstra te that our a lgor ithm runs faster and ob tains h ighe r prec is ion than the fam ous SVM l ight algorithm does.

参考文献/References:

[ 1] Vapn ik V N. 统计学习理论的本质[M ]. 张学工, 译. 北京: 清华大学出版社, 1999.
Vapn ik V N. The Nature o f Statistica lLearn ing Theo ry[M ]. Zhang Xuegong, Translated. Be ijing: Ts inghuaUn iversity Press, 1999. ( in Chinese)
[ 2] V apn ik V N. An ove rv iew of statistical learning theo ry[ J]. IEEE Transactions on Neura lNe tw orks, 1999, 10( 5): 988 999.
[ 3] 张学工. 关于统计学习理论与支持向量机[ J]. 自动化学报, 2001, 26 ( 1): 32 -42.
Zhang Xuegong. About sta tistica l learn ing theory and support vectorm ach ines[ J] . ActaAutom atica Sin ica, 2001, 26 ( 1) : 32- 42. ( in Chinese)
[ 4] W ahba G, Lin Y, Zhang H. M a rg in- like quantities and genera lized approx ima te cross va lida tion for support vector m ach ines [ C] / / Neural Netwo rks fo r Signa l Process ing IX ( Proceed ings o f the 1999 IEEE S igna l Pro cessing Soc ietyW orkshop) . M ad-i son, USA: IEEE Com puter So ciety Press, 1999: 12- 20.
[ 5] W ahbaG, L in X, Gao F, et a.l The b ias-variance tradeo ff and the random ized GACV[ C] / / Advances in In fo rm ation Processing System s 11. Cam bridgeMA: M IT Press, 1999: 620- 626.
[ 6] Chapelle O, Vapnik V, Bousquet O. Choosing mu ltip le param e ters for support vectorm ach ines[ J] . M ach ineLearn ing, 2002, 46( 3): 131- 159.
[ 7] Chung K M, KaoW C, Sun C L, et a.l Radius m arg in bounds for suppo rt vectorm achines w ith the RBF ke rnel[ J]. Neural Com puta tion, 2003, 15( 11): 2 643 -2 681.
[ 8] Xu J H. Des igning non linear c lassifiers through m in im izing VC dim ension bound[ J]. Lecture Notes in Computer Sc iences, 2005, 3496: 900- 905.
[ 9] 徐士良. 常用算法程序集( C语言描述) [M ]. 北京: 清华大学出版社, 2004.
Xu Sh iliang. Set Procedures Comm only U sed A lgor ithm ( C Description Language) [M ]. Be ijing: TsinghuaUn iv ers ity Press, 2004. ( in Chinese)
[ 10] 袁亚湘, 孙文瑜. 最优化理论与方法[M ]. 北京: 科学出版社, 2003.
Yuan Yax iang, SunW enyu. Optim ization Theory andM ethods[M ] . Beijing: Sc ience Press, 2003. ( in Ch inese)
[ 11] H imm e lb lau D M. 实用非线性规划[M ]. 北京: 科学出版社, 1981.
H imm e lb lau D M. Practical Nonlinea r Programm ing[M ] . Beijing: Sc ience Press, 1981. ( in Ch inese)
[ 12] 刘宝光编著. 非线性规划[M ]. 北京: 北京理工大学出版社, 1988. L iu Baoguang. Non linear Prog ramm ing[M ]. Be ijing: Be ijing Institute o f Techno logy Press, 1988. ( in Chinese)
[ 13] Osuna E, Freund R, G iro si F. An improved tra in ing algorithm fo r support vectorm achines[ C] / / IEEEW orkshop on Neural Netwo rks fo r S ignal Processing. Am elea Island, FL: IEEE, 1997: 276- 285.
[ 14] Joachins T. M aking large- scale SVM learn ing practical[ C ] / / Scho lkopf B, Burges C J C, Smo la A J. Advances in Ke rnel M ethods-Support Vector Learn ing. Cam bridgeMA: M IT Press, 1998: 41- 56.
[ 15] P latt J C. Sequential m in im al optim iza tion: a fast algor ithm fo r tra ining suppo rt vector m ach ines[ R]. M icroso ft Research Technical Report: MSR- TR- 98- 14, 1998

相似文献/References:

[1]周欣,许建华.基于遗传算法与经验误差最小化的SVM模型选择方法[J].南京师范大学学报(工程技术版),2009,09(02):065.
 Zhou Xin,Xu Jianhua.SVM Model Selection Based on Genetic Algorithms and Empirical Error Minimization[J].Journal of Nanjing Normal University(Engineering and Technology),2009,09(01):065.
[2]张永军,刘金岭.一种改进的高效贝叶斯短信文本分类器[J].南京师范大学学报(工程技术版),2014,14(03):070.
 Zhang Yongjun,Liu Jinling.An Improved Efficient Bayesian Short Message Text Classifier[J].Journal of Nanjing Normal University(Engineering and Technology),2014,14(01):070.
[3]张会敏,胡 太.基于SVM的老年痴呆症智能诊断研究[J].南京师范大学学报(工程技术版),2016,16(02):086.[doi:10.3969/j.issn.1672-1292.2016.02.014]
 Zhang Huimin,Hu Tai.A Study on Intelligent Diagnosis of Senile Dementia Based on SVM[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(01):086.[doi:10.3969/j.issn.1672-1292.2016.02.014]
[4]黄宏运,吴礼斌,李诗争.GA优化的SVM在量化择时中的应用[J].南京师范大学学报(工程技术版),2017,17(01):072.[doi:10.3969/j.issn.1672-1292.2017.01.011]
 Huang Hongyun,Wu Libin,Li Shizheng.Application of SVM Optimized by Genetic Algorithmin Quantization Timing Selection[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(01):072.[doi:10.3969/j.issn.1672-1292.2017.01.011]
[5]彭献永,吴 奇.基于小波匹配的新小波支持向量机预测模型[J].南京师范大学学报(工程技术版),2019,19(02):050.[doi:10.3969/j.issn.1672-1292.2019.02.007]
 Peng Xianyong,Wu Qi.The Forecasting Model Based on Matched Waveletsand Wavelet Kernel Support Vector Machine[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(01):050.[doi:10.3969/j.issn.1672-1292.2019.02.007]
[6]刘 灵,孙晨晨,徐寅林,等.基于图像预处理分类分割的盲道分割算法[J].南京师范大学学报(工程技术版),2020,20(01):042.[doi:10.3969/j.issn.1672-1292.2020.01.007]
 Liu Ling,Sun Chenchen,Xu Yinlin,et al.Blind Sidewalk Segmentation Algorithm Based on ImagePreprocessing Classification and Segmentation[J].Journal of Nanjing Normal University(Engineering and Technology),2020,20(01):042.[doi:10.3969/j.issn.1672-1292.2020.01.007]
[7]余凌浩,陆铁文,李 晨,等.基于子带谱熵法和PSO-GA-SVM的汽车鸣笛识别[J].南京师范大学学报(工程技术版),2021,21(02):027.[doi:10.3969/j.issn.1672-1292.2021.02.005]
 Yu Linghao,Lu Tiewen,Li Chen,et al.Car Whistle Recognition Based on Sub-Band SpectralEntropy Method and PSO-GA-SVM[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(01):027.[doi:10.3969/j.issn.1672-1292.2021.02.005]

备注/Memo

备注/Memo:
基金项目: 江苏省自然科学基金( BK2004142)资助项目.
作者简介: 魏慧荣( 1979-) , 女, 硕士研究生, 研究方向: 模式识别. E-m ail:w eihu irong@ gm ai.l com
通讯联系人: 许建华( 1962-) , 高级工程师, 博士, 研究方向: 模式识别、机器学习等. E-m ail:xu jianhu a@ n jnu. edu. cn
更新日期/Last Update: 2013-04-24