[1]王倩倩,赵彩虹,马成飞,等.基于二进制粒子群算法的可中断负荷优化调度[J].南京师范大学学报(工程技术版),2011,11(02):019-25.
Wang Qianqian,Zhao Caihong,Ma Chengfei,et al.Scheduling of Interruptible Load Based on Binary Particle Swarm Optimization[J].Journal of Nanjing Normal University(Engineering and Technology),2011,11(02):019-25.
点击复制
基于二进制粒子群算法的可中断负荷优化调度
南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
11卷
- 期数:
-
2011年02期
- 页码:
-
019-25
- 栏目:
-
- 出版日期:
-
2011-04-09
文章信息/Info
- Title:
-
Scheduling of Interruptible Load Based on Binary Particle Swarm Optimization
- 作者:
-
王倩倩;赵彩虹;马成飞;李振;
-
南京师范大学电气与自动化工程学院,江苏南京210042
- Author(s):
-
Wang Qianqian; Zhao Caihong; Ma Chengfei; Li Zhen
-
School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210042,China
-
- 关键词:
-
可中断负荷; 二进制粒子群算法( BPSO) ; 优化调度; 需求侧管理
- Keywords:
-
interruptible load; binary particle swarm optimization ( BPSO) ; optimization scheduling; demand side management
- 分类号:
-
TM73
- 摘要:
-
可中断负荷是非常重要的需求侧资源.本文对于在保证系统安全的前提下进行可中断负荷的优化调度,基于二进制粒子群优化算法(BPSO)分时段优化调度特性不同的多个可中断负荷,以满足系统各时段削减容量的需求,同时满足可中断负荷的运行约束条件,并使供电公司支付的补偿费用最小以及执行中断的次数最少.使用加权的处理方法把可中断负荷优化调度的多目标优化问题简化为单一的目标函数,经实例验证基于BPSO的优化算法对可中断负荷的优化调度是有效的.
- Abstract:
-
Interruptible Loads ( ILs) represent highly valuable demand side resources. With regards to the scheduling of interruptible loads,this paper investigates the use of binary particle swarm optimization ( BPSO) to schedule a number of ILs whose operational characteristics are different over 16 hours. The scheduling objective is to achieve the requirement of hourly curtailments while satisfying the operational constraints of the interruptible loads,minimizing the payments and the frequency of interruptions. This multi-objective optimization problem was simplified to a single objective function by weight. Simulation results are presented to validate the method.
参考文献/References:
[1]薛禹胜,罗运虎,李碧君,等. 关于可中断负荷参与系统备用的评述[J]. 电力系统自动化, 2007, 31( 10) : 1-6. Xue Yusheng,Luo Yunhu,Li Bijun,et al. A review of interruptible load participating in system reserve[J]. Automation of Electric Power Systems,2007, 31( 10) : 1-6. ( in Chinese)
[2]何禹清,彭建春,毛丽林. 计及电压水平的多目标可中断负荷阻塞管理[J]. 电网技术, 2010, 34( 1) : 122-128. He Yuqing,Peng Jianchun,Mao Lilin. A multi-objective congestion management method participating with interruptible load and taking account of voltage level[J]. Power System Technology,2010, 34( 1) : 122-128. ( in Chinese)
[3]Majumdar S,Chattopadhyay D,Parikh J. Interruptible load management using optimal power flow analysis[J]. IEEE Trans Power Syst,1996, 11( 2) : 715-720.
[4]Bai J,Gooi H B,Xia L M,et al. A probabilistic reserve market incorporating interruptible load[J]. IEEE Trans Power Syst, 2006, 21( 3) : 1079-1087.
[5]Xia L M,Gooi H B,Bai J. Probabilistic spinning reserves with interruptible loads[C]/ / Proc IEEE Power Eng Soc General Meeting. USA: Denver,2004: 146-152.
[6]Huang K Y. Demand subscription services—An iterative dynamic programming for the substation suffering from capacity shortage [J]. EEE Trans Power Syst,2003, 18( 2) : 947-953.
[7]Wang Jianxue,Wang Xifan,Ding Xiaoying. The forward contract model of interruptible load in power market[C]/ / IEEE PES Transmission and Distribution Conference. China: Dalian,2005.
[8]Huang K Y,Chin H C,Huang Y C. A model reference adaptive control strategy for interruptible load management[J]. IEEE Trans Power Syst,2004, 19( 1) : 683-689.
[9]于娜,芙蓉薇. 电力市场高峰时段可中断负荷优化购买模型[J]. 电力系统及其自动化学报,2010, 22( 4) : 89-93. Yu Na,Fu Rongwei. Optimization model of interruptible load dispatch during the peak load time period in the eariler power market[J]. Proceeding of the CSU-EPSA,2010, 22( 4) : 89-93. ( in Chinese)
[10]Kennedy J,Eberhart R. Particle swarm optimization[C]/ / Proc of the 1995 IEEE International Conference on Neural Networks. Australia: IEEE Service Center,1995: 1 942-1 948.
[11]Kennedy J,Eberhart R C. A discrete binary version of the particle swarm algorithm[C]/ / Proc of International Conference on System,Man and Cybernetic. Orlando: IEEE Press,1997: 4 104-4 108.
备注/Memo
- 备注/Memo:
-
通讯联系人: 赵彩虹,教授,研究方向: 电力系统自动化及无功优化电力市场. E-mail: zhaocaihong@ njnu. edu. Cn
更新日期/Last Update:
2013-03-21