[1]陈战平.估计噪声方差与Kalman滤波的传感器动态补偿[J].南京师范大学学报(工程技术版),2011,11(03):013-17.
Cheng Zhanping.Dynamic Compensating of Sensor Based on Noise Variance Estimation and Kalman Filtering[J].Journal of Nanjing Normal University(Engineering and Technology),2011,11(03):013-17.
点击复制
估计噪声方差与Kalman滤波的传感器动态补偿
南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
11卷
- 期数:
-
2011年03期
- 页码:
-
013-17
- 栏目:
-
- 出版日期:
-
2011-11-30
文章信息/Info
- Title:
-
Dynamic Compensating of Sensor Based on Noise Variance Estimation and Kalman Filtering
- 作者:
-
陈战平;
-
南京师范大学计算机科学与技术学院,江苏南京210046
- Author(s):
-
Cheng Zhanping
-
School of Computer Science and Technology,Nanjing Normal University,Nanjing 210046,China
-
- 关键词:
-
动态补偿; 噪声; 方差估计; 滤波
- Keywords:
-
dynamic compensation; noise; variance estimation; filtering
- 分类号:
-
TP212
- 摘要:
-
传感器动态补偿后的输出噪声被加重且方差未知.为有效地抑制补偿后的噪声干扰,研究了一种在未知观测噪声方差条件下,采用卡尔曼滤波去噪的传感器动态补偿算法.补偿器的参数通过参考模型和系统辨识的方法得到,同时,利用参考模型建立卡尔曼滤波器,消除高频噪声对测量精度的影响.由于补偿器的输出信号可以用一个M阶多项式分段逼近,利用小波消失矩原理对输出信号的噪声进行方差估计,从而解决了在未知观测噪声的条件下卡尔曼滤波失效问题.最后,通过仿真和应用实验,验证了该方法的有效性.
- Abstract:
-
After sensor dynamic compensation,the output signal of the noise is increased and the variance is unknown. In order to effectively suppress noise,a dynamic compensation algorithm of adopting Kalman filter de-noising is researched in unknown measurement noise variance. Parameters of the compensator were obtained by reference model and system identification. At the same time,Kalman filter was constructed with reference mode to eliminate high frequency effected measurement precision. On account of the compensator’s output signal piecewise approximated by a polynomial with a degree of M,the noise variance can be estimated to utilize vanishing moments of wavelet,and the Kalman filter under the unknown measurement noise variance condition is valid. Simulation experimental results show that the approach is effective.
参考文献/References:
[1]Wu Dehui,Huang Songling,Zhao Wei,et al. Infrared thermometer sensor dynamic error compensation using hammerstein neural network[J]. Sensors and Actuators A,2009,149( 3) : 152-158.
[2]Yu D H,Liu F,Lai P Y. Nonlinear dynamic compensation of sensors using inverse-model-based neural network[J]. IEEE Trans Instrum Meas,2008, 57( 10) : 2 364-2 376.
[3]Schoen M P. Dynamic compensation of intelligent sensors[J]. IEEE Trans Instrum Meas,2007,56( 5) : 1 992-2 001.
[4]Marconato A,Hu M Q,Boni A. Dynamic compensation of nonlinear sensors by a learning-from-examples approach[J]. IEEE Trans Instrum Meas,2008,57( 8) : 1 689-1 694.
[5]Mehdi Jafaripanah,Bashir M Al-Hashimi,Neil M White. Application of analog adaptive filters for dynamic sensor compensation [J]. IEEE Trans Instrum Meas,2005,54( 1) : 245-251.
[6]Fitzgerald R J. Divergence of the kalman filter [J]. IEEE Trans on Automatic Control, 1971, 16 ( 6) : 736-747.
[7]Xu Lijun,Zhang Jianqiu,Yan Yong. A wavelet-based multisensor data fusion algorithm[J]. IEEE Trans Instrum Meas, 2004,53( 6) : 1 539-1 545.
[8]刘清,曹国华. 模型参考和误差白化的传感器动态补偿算法[J]. 控制理论与应用,2009,26( 3) : 256-260. Liu Qing,Cao Guohua. Reference-model and error-whitening in dynamic compensation for sensor[J]. Control Theory and Application, 2009,26( 3) : 256-260.
[9]L A L l d Almeida,Deep G S,Lima A M N,et al. A hysteretic model for a vanadium dioxide transition-edge microbolometer [J]. IEEE Trans Instrum Meas,2001,50( 4) : 1 030-1 035.
备注/Memo
- 备注/Memo:
-
通讯联系人: 陈战平,讲师,研究方向: 测控技术研究. E-mail: cxpcjx@163. Com
更新日期/Last Update:
2013-03-21