[1]钱 辰,窦万峰.面向离散点云并行插值数据划分方法研究[J].南京师范大学学报(工程技术版),2013,13(02):063-67.
 Qian Chen,Dou Wanfeng.Research on Data Partition Method for Parallel Interpolation of Discrete Point Cloud[J].Journal of Nanjing Normal University(Engineering and Technology),2013,13(02):063-67.
点击复制

面向离散点云并行插值数据划分方法研究
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
13卷
期数:
2013年02期
页码:
063-67
栏目:
出版日期:
2013-06-30

文章信息/Info

Title:
Research on Data Partition Method for Parallel Interpolation of Discrete Point Cloud
文章编号:
1672-1292(2013)02-0063-05
作者:
钱 辰1窦万峰12
1.南京师范大学计算机科学与技术学院,江苏 南京 210023
2.江苏省信息安全保密技术工程研究中心,江苏 南京 210097
Author(s):
Qian Chen1Dou Wanfeng12
1.School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China) (
2.Jiangsu Research Center of Information Security and Privacy Technology,Nanjing 210097,China
关键词:
数字高程模型并行插值离散点云数据划分
Keywords:
digital elevation modelparallel interpolationdiscrete point clouddata partition
分类号:
TP301.5
文献标志码:
A
摘要:
插值是数字高程模型的核心分析方法,也是构建数字高程模型的常用手段.面对海量的离散点云数据,插值生成DEM的过程需要消耗大量的时间,将并行计算运用到插值计算中会显著缩短计算时间.结合点云数据分布不均匀的特点,本文提出了一套针对离散点云并行插值生成格网DEM的数据划分方法,将读取、搜索邻域、插值计算、输出4个过程的处理时间量化,保证划分后形成的子块处理时间均衡,提高了并行计算效率.
Abstract:
Interpolation is the core analysis method of the digital elevation model,which is also a common means of the construction of the digital elevation model.It consumes a lot of time to generate an interpolated DEM when discrete point cloud data is magnitude.Applied parallel computing to interpolation calculation can significantly shorten the calculation time.Taking the point cloud data distribution characteristics into consideration,this paper raises a data partition method,which is used for parallel interpolation of discrete cloud points to generate grid DEM.This approach quantifies the processing time of four procedures,such as input,searching neighborhood,interpolation calculation and output.This method can keep the balance of the processing time of the sub-blocks thereby improving the efficiency of parallel interpolation.

参考文献/References:

[1] Kang-tsung Chang.地理信息系统导论[M].北京:科学出版社,2003:245.
Kang-tsung Chang.Introduction of Geographic Information System[M].Beijing:Science Press,2003:245.(in Chinese)
[2]刘南,刘仁义.地理信息系统[M].北京:高等教育出版社,2002.
Liu Nan,Liu Renyi.Geographic Information System[M].Beijing:Higher Education Press,2002.(in Chinese)
[3]Ann Chervenak.The data arid:Towards an architecture for the distributed management and analysis of large scientific datasets[J].Journal of Network and Computer Application,2000,23:187-200.
[4]王永杰,孟令奎,赵春宇.基于Hilbert空间排列码的海量空间数据划分算法研究[J].武汉大学学报:信息科学版,2007,37(7):650-653.
Wang Yongjie,Meng Lingkui,Zhao Chunyu.Spatial partitioning of massive data based on Hilbert spatial ordering code[J].Geomatics and Information Science of Wuhan University,2007,37(7):650-653.(in Chinese)
[5]周艳,朱庆,张叶延.基于Hilbert曲线层次分解的空间数据划分方法[J].地理与地理信息科学,2007,23(4):13-17.
Zhou Yan,Zhu Qing,Zhang Yeyan.A spatial data partitioning algorithm based on spatial hierarchical decomposition method of Hilbert space-filling curve[J].Geography and Geo-information Science,2007,23(4):13-17.(in Chinese)
[6]Wang Shaowen,Marc P Armstrong.A quadtree approach to domain decomposition for spatial interpolation in Grid computing environments[J].Parallel Computing,2003,29:1481-1504.
[7]吕建峰,刘定生,焦伟利,等.DEM生成算法并行化研究[J].中国图像图形学报,2002,7(5):506-516.
Lü Jianfeng,Liu Dingsheng,Jiao Weili,et al.Parallel algorithms research on the interpolation of DEM[J].Journal of Image and Graphics,2002,7(5):506-516.(in Chinese)
[8]Huang Fang,Liu Dingsheng,Tan Xicheng,et al.Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster based parallel GIS[J].Computers and Geosciences,2011,37:126-131.
[9]Lluis Pesquer,Ana Cortes,Xavier Pons.Parallel ordinary kriging interpolation incorporating automatic variogram fitting[J].Computers and Geosciences,2011,37:464-473.
[10]Armstron M P,Marciano R.Parallel spatial interpolation[C]//Proceedings of the 11th International Symposium on Computer-Assisted Cartography(auto-Carto 11).Bethesda,MD:American Congress on Surveying and Mapping,1993:414-423.
[11]Guan Xuefeng,Wu Huayi.Leveraging the power of multi-core platforms for large-scale geospatial data processing:Exemplified by generating DEM from massive LiDAR point clouds[J].Computers and Geosciences,2010,36:464-473.
[12]胡金星,马照亭,吴焕萍,等.基于格网划分的海量数据Delaunay三角剖分[J].测绘学报,2004,33(2):163-167.
Hu Jinxing,Ma Zhaoting,Wu Huanping,et al.Massive data delaunay triangulation based on grid partition method[J].Acta Geodaetica et Cartographica Sinica,2004,33(2):163-167.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2012-11-28.
基金项目:国家自然科学基金(41171298)、国家“863”重点项目(2011AA120304).
通讯联系人:窦万峰,博士后,教授,研究方向:并行数字地形分析和计算机支持的协同工作(CSCW).E-mail:douwanfeng@njnu.edu.cn
更新日期/Last Update: 2013-06-30