[1]张居兵,李雅宁,钱舒琳,等.气-液-固三相流化床冷态实验[J].南京师范大学学报(工程技术版),2014,14(04):025.
 Zhang Jubing,Li Yaning,Qian Shulin,et al.Cold Model Experiment of Gas-Liquid-Solid Three-Phase Fluidized Bed[J].Journal of Nanjing Normal University(Engineering and Technology),2014,14(04):025.
点击复制

气-液-固三相流化床冷态实验
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
14卷
期数:
2014年04期
页码:
025
栏目:
出版日期:
2014-12-31

文章信息/Info

Title:
Cold Model Experiment of Gas-Liquid-Solid Three-Phase Fluidized Bed
作者:
张居兵李雅宁钱舒琳杨宏旻朴桂林
南京师范大学能源与机械工程学院,南京 210042
Author(s):
Zhang JubingLi YaningQian ShulinYang HongminPiao Guilin
School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210042,China
关键词:
三相流化床压力脉动信号最小流化速度
Keywords:
three-phase fluidized bedpressure fluctuation signalminimum fluidization velocity
分类号:
TQ021
文献标志码:
A
摘要:
以氮气为气相、蒸馏水为液相、铜粉为固相构建了的气-液-固三相流化床冷态实验装置,流化床反应器内径为50 mm、高为500 mm.采用Hilbert-Huang Transform分析了布风板上表面处压力脉动信号,考察了布风板压差和床内两固定测点间压差随气体流速的变化关系,使用降速法得到了气-液-固三相流化床的最小流化速度,并通过同步图像采集验证了该最小流化速度.结果表明:气体流速为14.85 mm/s时,固体颗粒之间碰撞剧烈,气、液、固三相混合均匀; 随着气体流速的增加,两固定测点间压降呈现先降低,后增加,最后又降低的变化趋势; 气-液-固三相流化床的最小流化速度约为17.4 mm/s.
Abstract:
A gas-liquid-solid three-phase fluidized bed with inner diameter of 50 mm and height of 500 mm is established by using nitrogen as gas phase,distilled water as liquid phase and copper powder as solid phase.Pressure fluctuation signals obtained in the region upon the gas distributor are analyzed by Hilbert-Huang Transform method.The effects of gas flow rate on gas distributor pressure drop and differential pressure between two fixed measure points are studied.Minimum fluidization velocity of the three-phase fluidized bed is obtained from cold model experiments and further confirmed by high speed photography.The results show that solid particles strike each other violently with the gas flow rate of 14.85 mm/s.Gas phase,liquid phase and solid phase mixes well under such gas flow rate.With the increase in gas flow rate,differential pressure between two fixed measure points decreases at first,and then increases,and decreases at last.The minimum fluidization velocity of the three phase fluidized bed is determined as 17.4 mm/s and finally is verified by high synchronous image acquisition.

参考文献/References:

[1] Gómez-Hernández J,Sánchez-Prieto J,Briongos J V,et al.Wide band energy analysis of fluidized bed pressure fluctuation signals using a frequency division method[J].Chem Eng Sci,2014,105:92-103.
[2]Hu L S,Wang X J,Yu G S,et al.Chaotic analysis of pressure fluctuation signal in the gas-liquid-solid slurry column[J].Nonlinear Anal Real,2009,10(1):410-415.
[3]Si C,Zhou J,Guo Q.Characterization of pressure fluctuation signals in an acoustic bubbling fluidized bed[J].J Taiwan Inst Chem E,2011,42(6):929-936.
[4]刘明辉,丁忠伟,张同旺,等.气-固加压流化床压力脉动信号的分析[J].计算机与应用化学,2011,28(10):1 281-1 284.
Liu Minghui,Ding Zhongwei,Zhang Tongwang,et al.Analysis of pressure fluctuation signals in a pressured fluidized bed[J].Computers and Applied Chemistry,2011,28(10):1 281-1 284.(in Chinese)
[5]江浩,李贇,李珩,等.基于经验模态分解的火电机组热力参数滤波处理[J].热力发电,2008,37(6):64-68.
Jiang Hao,Li Yun,Li Heng,et al.Filtration treatment of thermodynamic parameters concerning thermal power unit based on empirical mode decomposition[J].Thermal Power Generation,2008,37(6):64-68.(in Chinese)
[6]黄海,黄轶伦,张卫东.气固流化床压力脉动信号的相关结构模型与分析[J].化工学报,1999,50(6):812-817.
Huang Hai,Huang Yilun,Zhang Weidong.Modeling and analysis of pressure fluctuations in a gas-solid fluidized bed[J].Journal of Chemical Industry and Engineering(China),1999,50(6):812-817.(in Chinese)
[7]Mazurenka M,Wada R,Shillings A J L,et al.Fast Fourier transform analysis in cavity ring-down spectroscopy:application to an optical detector for atmospheric NO2[J].Applied Physics B,2005,81(1):135-141.
[8]Pippig M,Potts D.Parallel three-dimensional nonequispaced fast Fourier transforms and their application to particle simulation[J].SIAM J Sci Comput,2013,35(4):C411-C437.
[9]王肖祎,仲兆平,王春华.流化床内生物质石英砂双组分混合流动混沌递归分析[J].化工学报,2014,65(3):813-819.
Wang Xiaoyi,Zhong Zhaoping,Wang Chunhua.Chaotic recurrence analysis of two-component flow of mixed biomass particles and quartz sands in fluidized-bed[J].CIESC Journal,2014,65(3):813-819.(in Chinese)
[10]Kuo Y L.Chaotic analysis of the geometrically nonlinear nonlocal elastic single-walled carbon nanotubes on elastic medium[J].J Nanosci Nanotechno,2014,14(3):2 352-2 360.
[11]Jothiprakash V,Fathima T A.Chaotic analysis of daily rainfall series in koyna reservoir catchment area,India[J].Stoch Env Res Risk A,2013,27(6):1 371-1 381.
[12]Marwan N,Carmen Romano M,Thiel M,et al.Recurrence plots for the analysis of complex systems[J].Phys Rep,2007,438(5):237-329.
[13]Li B,Chen X.Wavelet-based numerical analysis:a review and classification[J].Finite Elem Anal Des,2014,81:14-31.
[14]王松岭,刘锦廉,许小刚.基于小波包变换和奇异值分解的风机故障诊断研究[J].热力发电,2013,42(11):101-106.
Wang Songling,Liu Jinlian,Xu Xiaogang.Wavelet packet transform and singular value decomposition based fault diagnosis of fans[J].Thermal Power Generation,2013,42(11):101-106.(in Chinese)
[15]Yan J,Lu L.Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis[J].Signal Process,2014,98:74-87.
[16]Lu P,Han D,Jiang R,et al.Experimental study on flow patterns of high-pressure gas-solid flow and Hilbert-Huang transform based analysis[J].Exp Therm Fluid Sci,2013,51:174-182.
[17]王晓萍.气固流化床压力脉动信号的Hilbert-Huang变换与流型识别[J].高校化学工程学报,2005,19(4):474-479.
Wang Xiaoping.The Hilbert-Huang transform and flow regimes identification for pressure fluctuation of gas-solid fluidized beds[J].Journal of Chemical Engineering of Chinese Universities,2005,19(4):474-479.(in Chinese)
[18]黄海,黄轶伦.气固流化床压力脉动信号的Hilbert-Huang谱分析[J].化工学报,2004,55(9):1 441-1 447.
Huang Hai,Huang Yilun.Pressure-fluctuation analysis of gas-solid fluidized beds using Hilbert-Huang transform[J].Journal of Chemical Industry and Engineering,2004,55(9):1 441-1 447.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2014-05-26.
基金项目:江苏省高校自然科学基金(12KJB480006)、江苏省自然科学基金(BK2012851).
通讯联系人:张居兵,博士,讲师,研究方向:燃料电池、生物质活性炭制备、煤和生物质混合气化等.E-mail:jubingzhang@njnu.edu.cn
更新日期/Last Update: 2014-12-31