[1]王水花,张煜东,吉根林.群智能算法的理论及应用综述[J].南京师范大学学报(工程技术版),2014,14(04):031.
 Wang Shuihua,Zhang Yudong,Ji Genlin.Survey on Theories and Applications of Swarm Intelligence Algorithms[J].Journal of Nanjing Normal University(Engineering and Technology),2014,14(04):031.
点击复制

群智能算法的理论及应用综述
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
14卷
期数:
2014年04期
页码:
031
栏目:
出版日期:
2014-12-31

文章信息/Info

Title:
Survey on Theories and Applications of Swarm Intelligence Algorithms
作者:
王水花12张煜东1吉根林1
(1.南京师范大学计算机科学与技术学院,江苏 南京 210023)(2.南京大学电子科学与工程学院,江苏 南京 210046)
Author(s):
Wang Shuihua12Zhang Yudong1Ji Genlin1
(1.School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China)(2.School of Electronic Science and Engineering,Nanjing University,Nanjing 210046,China)
关键词:
群智能蚁群算法粒子群算法人工蜂群细菌觅食优化萤火虫算法
Keywords:
swarm intelligenceant colony optimizationparticle swarm optimizationartificial bee colonybacterial foraging optimizationfirefly algorithm
分类号:
TP18
文献标志码:
A
摘要:
群智能是由自然或人造的分散自组织系统所表现出来的集体智能.群智能包含一组简单的个体,其中个体与个体、个体与环境之间存在局部交互行为.虽然个体遵循非常简单的规则,但是微观的交互最终还是导致了宏观的智能行为.在本文中,我们对典型群智能方法的起源、发展、理论、技术、应用等做了深入的研究,包括了蚁群优化、粒子群优化、人工蜂群、细菌觅食优化、萤火虫共五类算法.文末提出群智能发展的六个方向.
Abstract:
Swarm Intelligence(SI)is the collective behavior of decentralized,self-organized systems,regardless of natural or artificial.It consists of a population of simple agents interacting locally with one another and with their environments.Although the agents follow very simple rules,the microscale interactions lead to the emergence of macroscale intelligence behavior.In this study,we make an in-depth survey on the origins,developments,theories and applications of 5 typical SI algorithms,which consist of ant colony optimization,particle swarm optimization,artificial bee colony,bacterial foraging optimization,and firefly algorithm.We conclude the paper by proposing six potential research directions.

参考文献/References:

[1] Rubio-Largo A,Vega-Rodriguez M A,Gomez-Pulido J A,et al.A comparative study on multiobjective swarm intelligence for the routing and wavelength assignment problem[J].IEEE Transactions on Systems,Man,and Cybernetics-Part C:Applications and Reviews,2012,42(6):1 644-1 655.
[2]Paterlini S,Krink T.Differential evolution and particle swarm optimisation in partitional clustering[J].Computational Statistics and Data Analysis,2006,50(5):1 220-1 247.
[3]Du X,Cheng L,Liu L.A swarm intelligence algorithm for joint sparse recovery[J].IEEE on Signal Processing Letters,2013,20(6):611-614.
[4]Lee D S,Lee A C.Pheromone propagation controller:the linkage of swarm intelligence and advanced process control[J].IEEE Transactions on Semiconductor Manufacturing,2009,22(3):357-372.
[5]Hinchey M G,Sterritt R,Rouff C.Swarms and swarm intelligence[J].Computer,2007,40(4):111-113.
[6]Naeem M,Pareek U,Lee D C.Swarm intelligence for sensor selection problems[J].IEEE on Sensors Journal,2012,12(8):2 577-2 585.
[7]Smith C U M.The‘hard problem’and the quantum physicists.Part 2:Modern times[J].Brain and Cognition,2009,71(2):54-63.
[8]Krink T.Cooperation and selfishness in strategies for resource management[J].Spill Science and Technology Bulletin,2000,6(2):165-171.
[9]Samanta C K,Padhy S K,Panigrahi S P,et al.Hybrid swarm intelligence methods for energy management in hybrid electric vehicles[J].Electrical Systems in Transportation,2013,3(1):22-29.
[10]冯静,舒宁.群智能理论及应用研究[J].计算机工程与应用,2006(17):31-34.
Feng Jing,Shu Ning.Applications and theory of swarm intelligence[J].Computer Engineering and Applications,2006(17):31-34.(in Chinese)
[11]Afshar M H.A parameter free continuous ant colony optimization algorithm for the optimal design of storm sewer networks:constrained and unconstrained approach[J].Advances in Engineering Software,2010,41(2):188-195.
[12]Zhang Y,Wu L.Bankruptcy prediction by genetic ant colony algorithm[J].Advanced Materials Research,2011,186:459-463.
[13]Blum C,Dorigo M.The hyper-cube framework for ant colony optimization[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2004,34(2):1 161-1 172.
[14]Dorigo M,Birattari M,Stutzle T.Ant colony optimization[J].IEEE on Computational Intelligence Magazine,2006,1(4):28-39.
[15]彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(12A):1 982-1 988.
Peng Xiyuan,Peng Yu,Dai Yufeng.Swarm intelligence theory and applications[J].Acta Electronica Sinica,2003,31(12A):1 982-1 988.(in Chinese)
[16]Gu J H,Tan Q,Li N N,et al.A new ACO with immune ability[C]//Proceedings of the Machine Learning and Cybernetics,2006 International Conference.Busan,Korea,2006:4 278-4 281.
[17]Wong K Y,See P C.A new minimum pheromone threshold strategy(MPTS)for max-min ant system[J].Applied Soft Computing,2009,9(3):882-888.
[18]张煜东,吴乐南,唐磊.隶属云模型蚁群算法的新应用:生鲜食品多阶段动态定价[J].统计与决策,2009(22):26-29.
Zhang Yudong,Wu Lenan,Tang Lei.Colud model based ant colony algorithm for multi-period dynamic pricing of fresh food[J].Statistics and Decision,2009(22):26-29.(in Chinese)
[19]Gupta D K,Arora Y,Singh U K,et al.Recursive ant colony optimization for estimation of parameters of a function[C]//Proceedings of the Recent Advances in Information Technology(RAIT),2012 1st International Conference.Dhanbad,India,2012:448-454.
[20]Fonseca L G,Capriles P V S C,Barbosa H J C,et al.A stochastic rank-based ant system for discrete structural optimization[C]//Proceedings of the Swarm Intelligence Symposium 2007.Berlin:IEEE,2007:68-75.
[21]Hu X M,Zhang J,Chung H S H,et al.SamACO:variable sampling ant colony optimization algorithm for continuous optimization[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2010,40(6):1 555-1 566.
[22]Hemmatian H,Fereidoon A,Sadollah A,et al.Optimization of laminate stacking sequence for minimizing weight and cost using elitist ant system optimization[J].Advances in Engineering Software,2013,57:8-18.
[23]Tang J,Ma Y,Guan J,et al.A max-min ant system for the split delivery weighted vehicle routing problem[J].Expert Systems with Applications,2013,40(18):7 468-7 477.
[24]张煜东,吴乐南,韦耿.基于正负反馈机制的蚁群算法用于软硬件划分[J].电子测量与仪器学报,2009,23(8):32-38.
Zhang Yudong,Wu Lenan,Wei Geng.Application of improved ant colony algorithm based on forward/backword feedback in hardware/software partition[J].Journal of Electronic Measurement and Instrument,2009,23(8):32-38.(in Chinese)
[25]文仁强,钟少波,袁宏永,等.应急资源多目标优化调度模型与多蚁群优化算法研究[J].计算机研究与发展,2013,50(7):1 464-1 472.
Wen Renqiang,Zhong Shaobo,Yuan Hongyong,et al.Emergency resource multi-objective optimization scheduling model and multi-colony ant optimization algorithm[J].Journal of Computer Research and Development,2013,50(7):1 464-1 472.(in Chinese)
[26]Hsu C H,Juang C F.Evolutionary robot wall-following control using type-2 fuzzy controller with species-DE-activated continuous ACO[J].IEEE Transactions on Fuzzy Systems,2013,21(1):100-112.
[27]Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of the Neural Networks,1995 Proceedings,IEEE International Conference.Perth,WA,USA,1995:1942-1948.
[28]Zhang Y,Wu L,Wang S.UCAV path planning by fitness-scaling adaptive chaotic particle swarm optimization[J].Mathematical Problems in Engineering,2013,2013:1-9.
[29]Shi Y,Eberhart R.A modified particle swarm optimizer[C]//Evolutionary Computation Proceedings,1998 IEEE World Congress on Computational Intelligence,The 1998 IEEE International Conference.Anchorage,AK,USA,1998:69-73.
[30]Coelho L D S.Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems[J].Expert Systems with Applications,2010,37(2):1 676-1 683.
[31]Tatsumi K,Ibuki T,Tanino T.A chaotic particle swarm optimization exploiting a virtual quartic objective function based on the personal and global best solutions[J].Applied Mathematics and Computation,2013,219(17):8 991-9 011.
[32]Wu W C,Tsai M S.Application of enhanced integer coded particle swarm optimization for distribution system feeder reconfiguration[J].Power Systems,IEEE Transactions on,2011,26(3):1 591-1 599.
[33]Li C,Yang S,Nguyen T T.A self-learning particle swarm optimizer for global optimization problems[J].Systems,Man,and Cybernetics,Part B:Cybernetics,IEEE Transactions on,2012,42(3):627-646.
[34]Pehlivanoglu Y V.A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks[J].Evolutionary Computation,IEEE Transactions on,2013,17(3):436-452.
[35]Figueiredo E M N,Ludermir T B.Effect of the PSO topologies on the performance of the PSO-ELM[C]//Proceedings of the Neural Networks(SBRN),2012 Brazilian Symposium.Curitiba,Parana,Brazil,2012:178-183.
[36]Lane J,Engelbrecht A,Gain J.Particle swarm optimization with spatially meaningful neighbours[C]//Proceedings of the Swarm Intelligence Symposium 2008.St.Louis,Missouri:IEEE,2008.
[37]Navalertporn T,Afzulpurkar N V.Optimization of tile manufacturing process using particle swarm optimization[J].Swarm and Evolutionary Computation,2011,1(2):97-109.
[38]Sun J,Fang W,Wu X,et al.QoS multicast routing using a quantum-behaved particle swarm optimization algorithm[J].Engineering Applications of Artificial Intelligence,2011,24(1):123-131.
[39]Tang X,Zhuang L,Cai J,et al.Multi-fault classification based on support vector machine trained by chaos particle swarm optimization[J].Knowledge-Based Systems,2010,23(5):486-490.
[40]Fu Y,Ding M,Zhou C.Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV[J].IEEE Transactions on Systems,Man and Cybernetics-Part A:Systems and Humans,2012,42(2):511-526.
[41]Genovesi S,Monorchio A,Mittra R,et al.A sub-boundary approach for enhanced particle swarm optimization and Its application to the design of artificial magnetic conductors[J].IEEE Transactions on Antennas and Propagation,2007,55(3):766-770.
[42]Chan K Y,Yiu C K F,Dillon T S,et al.Enhancement of speech recognitions for control automation using an intelligent particle swarm optimization[J].IEEE Transactions on Industrial Informatics,2012,8(4):869-879.
[43]Karaboga D,Basturk B.On the performance of artificial bee colony(ABC)algorithm[J].Applied Soft Computing,2008,8(1):687-697.
[44]Karaboga D,Akay B.A comparative study of artificial bee colony algorithm[J].Applied Mathematics and Computation,2009,214(1):108-132.
[45]Okaeme N A,Zanchetta P.Hybrid bacterial foraging optimization strategy for automated experimental control design in electrical drives[J].IEEE Transactions on Industrial Informatics,2013,9(2):668-678.
[46]Ebrahimi J,Hosseinian S H,Gharehpetian G B.Unit commitment problem solution using shuffled frog leaping algorithm[J].IEEE Transactions on Power Systems,2011,26(2):573-581.
[47]周雅兰.细菌觅食优化算法的研究与应用[J].计算机工程与应用,2010,46(20):16-21.
Zhou Yalan.Research and application on bacteria foraging optimization algorithm[J].Computer Engineering and Applications,2010,46(20):16-21.(in Chinese)
[48]Yang X S,Sadat Hosseini S S,Gandomi A H.Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect[J].Applied Soft Computing,2012,12(3):1 180-1 186.
[49]Horng M H.Vector quantization using the firefly algorithm for image compression[J].Expert Systems with Applications,2012,39(1):1 078-1 091.
[50]Falcon R,Almeida M,Nayak A.Fault identification with binary adaptive fireflies in parallel and distributed systems[C]//Proceedings of the Evolutionary Computation(CEC),2011 IEEE Congress on.New Orleans,2011:1 359-1 366.
[51]Fateen S E K,Bonilla-Petriciolet A,Rangaiah G P.Evaluation of covariance matrix adaptation evolution strategy,shuffled complex evolution and firefly algorithms for phase stability,phase equilibrium and chemical equilibrium problems[J].Chemical Engineering Research and Design,2012,90(12):2 051-2 071.
[52]Zhang Y,Wu L,Wang S.Solving two-dimensional HP model by firefly algorithm and simplified energy function[J].Mathematical Problems in Engineering,2013(13):1-9.
[53]Ducatelle F,Di Caro G A,Gambardella L M.An evaluation of two swarm intelligence MANET routing algorithms in an urban environment[C]//Proceedings of the Swarm Intelligence Symposium 2008.St.Louis,Missouri:IEEE,2008.

相似文献/References:

[1]王俊峰,朱庆保.基于蚁群算法的知识约简[J].南京师范大学学报(工程技术版),2005,05(02):050.
 WANG Junfeng,ZHU Qingbao.A Knowledge Reduction Method based on Ant Colony Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2005,05(04):050.
[2]张广帅,张煜东,吉根林.蚁群算法求解TSP综述[J].南京师范大学学报(工程技术版),2014,14(04):039.
 Zhang Guangshuai,Zhang Yudong,Ji Genlin.Survey on Ant Colony Algorithm for the Traveling Salesman Problem[J].Journal of Nanjing Normal University(Engineering and Technology),2014,14(04):039.
[3]张文祺,王 琦,徐乾宸,等.考虑时序特性的分布式光伏接入配电网的选址定容问题研究[J].南京师范大学学报(工程技术版),2017,17(03):022.[doi:10.3969/j.issn.1672-1292.2017.03.004]
 Zhang Wenqi,Wang Qi,Xu Qianchen,et al.Optimal Locating and Sizing of Distributed Photovoltaic in DistributionNetwork Considering Timing Characteristics[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(04):022.[doi:10.3969/j.issn.1672-1292.2017.03.004]

备注/Memo

备注/Memo:
收稿日期:2014-02-18.
基金项目:国家自然科学基金(40871176、610011024)、南京师范大学高层次人才科研启动
基金项目(2013119XGQ0061).
通讯联系人:张煜东,博士,教授,研究方向:人工智能与医学图像处理.E-mail:zhangyudong@njnu.edu.cn
更新日期/Last Update: 2014-12-31