[1]王珠林,闵富红,彭光娅,等.一个新三维混沌系统及其电路实现[J].南京师范大学学报(工程技术版),2016,16(01):001.
 Wang Zhulin,Min Fuhong,Peng Guangya,et al.A Three Dimension Chaotic System and Its Circuit Realization[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(01):001.
点击复制

一个新三维混沌系统及其电路实现
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
16卷
期数:
2016年01期
页码:
001
栏目:
电气与电子工程
出版日期:
2016-03-31

文章信息/Info

Title:
A Three Dimension Chaotic System and Its Circuit Realization
作者:
王珠林闵富红彭光娅王耀达
南京师范大学电气与自动化学院,江苏 南京 210042
Author(s):
Wang ZhulinMin FuhongPeng GuangyaWang Yaoda
School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210042,China
关键词:
电路仿真混沌系统动力学行为混沌电路
Keywords:
circuit simulationchaotic systemdynamical behaviorchaotic circuit
分类号:
TP391.9
文献标志码:
A
摘要:
提出一种新型的三维混沌系统,对系统的动力学特性进行了深入分析. 通过数值仿真,绘出了新系统的相轨迹图、功率谱图、分岔图、Lyapunov指数谱等,并发现新系统存在共存现象. 改变系统初始值大小,系统表现出的多种不同稳态的现象,证明了新系统存在丰富的共存现象,但是不会一直存在,它将随着参数的变化而消失. 最后,利用电路仿真软件Multisim对新系统进行仿真实验,仿真实验与理论分析结论十分吻合,证实了本文提出的新混沌系统电路在物理上是可以实现的.
Abstract:
In this paper,a new chaotic system is proposed and the dynamic characteristics of the system are analyzed through the phase trajectories of the new system,the power spectrum,bifurcation diagram,and Lyapunov exponent spectra,and the existence of the new system coexistence is discovered. With the different initial values,the system has shown that the coexistence of different motions disappears with the change of parameters. Finally,the circuit simulation results are in agreement with the numerical simulation which proves that the new chaotic system circuit is physically achievable.

参考文献/References:

[1] 陈关荣,吕金虎. Lorenz系统族的动力学分析、控制与同步[M]. 北京:科学出版社,2003.
CHEN G R,LU J H. Family Lorenz system dynamics analysis,control and synchronization[M]. Beijing:Science Press,2003.(in Chinese)
[2] LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the atmospheric sciences,1963,20(5):130-141.
[3] ROSSLER O E. An equation for continuous chaos[J]. Physical letters A,1976,57(5):397-398.
[4] CHUA L O,KOMURO M,MATSUMOTO T. The double scroll family[J]. IEEE transactions on circuits and systems,1986,33(11):1 072-1 096.
[5] CHEN G R,UETA T. Yet another chaotic attractor[J]. International journal of bifurcation & chaos,1999,9(7):1 465-1 466.
[6] CHEN G R,DONG X. From chaos to order:methodologies,perspectives and applications[M]. Singapore:World Scientific,1998.
[7] Lü J H,CHEN G R,CHENG D Z,et al. Bridge the gap between the Lorenz system and the Chen system[J]. International journal of bifurcation & chaos,2002,12(12):2 917-2 926.
[8] LIU C X,LIU T,LIU L,et al. A new chaotic attractor[J]. Chaos,solitons & fractals,2004,22(5):1 031-1 038.
[9] LIU C X,LIU L,LIU T,et al. A new butterfly-shaped attractor of Lorenz-like system[J]. Chaos,solitons & fractals,2006,28(5):1 196-1 203.
[10] QI G Y,DU S Z,CHEN G R,et al. On a four-dimensional chaotic system[J]. Chaos,solitons & fractals,2005,23(5):1 671-1 682.
[11] CHEN A M,LU J A,LU J H,et al. Generating hyperchaotic Lü attractor via state feedback control[J]. International journal of bifurcation & chaos,2005,364:103-110.
[12] 张建雄,唐万生,徐勇. 一个新的三维混沌系统[J]. 物理学报,2008,57(11):6 799-6 807.
ZHANG J X,TANG W S,XU Y. A new three-dimensional chaotic system[J]. Acta physica sinica,2008,57(11):6 799-6?807.(in Chinese)
[13] 唐亮瑞,李静,樊冰. 一个新四维自治超混沌系统及其电路实现[J]. 物理学报,2009,58(3):1 446-1 455.
TANG L R,LI J,FAN B. A new four-dimensional hyperchaotic system and its circuit simulation[J]. Acta physica sinica,2009,58(3):1 446-1 455.
[14] 周小勇. 一种具有恒Lyapunov指数谱的混沌系统及其电路仿真[J]. 物理学报,2011,60(10):54-65.
ZHOU X Y. A chaotic system with invariable Lyapunov exponent and its circuit simulation[J]. Acta physica sinica,2011,60(10):54-65.(in Chinese)
[15] 罗明伟,罗小华,李华青. 一类四维多翼混沌系统及其电路实现[J]. 物理学报,2013,62(2):153-158.
LUO M W,LUO X H,LI HUA Q. A family of four-dimensional multi-wing chaotic system and its circuit implementation[J]. Acta physica sinica,2013,62(2):153-158.(in Chinese)
[16] 邵书义,闵富红,吴薛红,等.基于现场可编程逻辑门阵列的新型混沌系统实现[J]. 物理学报,2014,63(6):73-81.
SHAO S Y,MIN FH,WU X H,et al. Implementation of a new chaotic system based on field programmable gate array[J]. Acta physica sinica,2014,63(6):73-81.(in Chinese)
[17] 李雄杰,周东华. 一种基于强跟踪滤波的混沌保密通信方法[J]. 物理学报,2015,64(14):140 501.
LI X J,ZHOU D H. A method of chaotic secure communication based on strong tracking filter[J]. Acta physica sinica,2015,64(14):140 501.(in Chinese)
[18] 闵富红,马美玲,翟炜,等. 基于继电特性函数的互联电力系统混沌控制[J]. 物理学报,2014,63(5):70-77.MIN F H,MA M L,ZHAI W,et al. Chaotic control of the interconnected power system based on the relay characteristic function[J]. Acta physica sinica,2014,63(5):70-77.(in Chinese)
[19] 吴忠强,杨阳,徐纯华. 混沌状态下永磁同步发电机的故障诊断——LMI法研究[J]. 物理学报,2013,62(15):82-88.
WU Z Q,YANG Y,XU C H. Fault diagnosis for permanent magnet synchronous generator under chaos conditions:LMI approach[J]. Acta physica sinica,2013,62(15):82-88.(in Chinese)

相似文献/References:

[1]张海龙,闵富红,王恩荣,等.关于Lyapunov指数计算方法的比较[J].南京师范大学学报(工程技术版),2012,12(01):005.
 Zhang Hailong,Min Fuhong,Wang Enrong.The Comparison for Lyapunov Exponents Calculation Methods[J].Journal of Nanjing Normal University(Engineering and Technology),2012,12(01):005.
[2]闵富红,吴薛红,曹弋,等.分数阶混沌系统的追踪同步与电路实现[J].南京师范大学学报(工程技术版),2011,11(02):013.
 Min Fuhong,Wu Xuehong,Cao Yi.Circuit Realization and Tracking of New Fractional-Order Chaotic System[J].Journal of Nanjing Normal University(Engineering and Technology),2011,11(01):013.
[3]邵书义,闵富红,李登辉,等.新型混沌系统的同步及在图像加密传输中的应用[J].南京师范大学学报(工程技术版),2015,15(01):001.
 Shao Shuyi,Min Fuhong,Li Denghui,et al.The Synchronization for Novel Chaotic System and ItsApplication in Image Encryption Transmission[J].Journal of Nanjing Normal University(Engineering and Technology),2015,15(01):001.
[4]李登辉,闵富红,马美玲.基于FPGA技术的混沌系统设计与实现[J].南京师范大学学报(工程技术版),2015,15(01):008.
 Li Denghui,Min Fuhong,Ma Meiling.The Design and Implementation of Chaotic SystemBased on FPGA Technology[J].Journal of Nanjing Normal University(Engineering and Technology),2015,15(01):008.

备注/Memo

备注/Memo:
收稿日期:2015-12-08. 
基金项目:江苏省自然科学基金(BK20131402). 
通讯联系人:闵富红,博士,副教授,研究方向:非线性电路与系统. E-mail:minfuhong@njnu.edu.cn
doi:10.3969/j.issn.1672-1292.2016.01.001
更新日期/Last Update: 2016-03-20