[1]刘莹莹,聂守平,刘 升,等.亚网格技术在二维Laguerre-FDTD方法中的应用[J].南京师范大学学报(工程技术版),2016,16(02):073.[doi:10.3969/j.issn.1672-1292.2016.02.012]
 Liu Yingying,Nie Shouping,Liu Sheng,et al.Application of Subgridding Algorithm to Two-DimensionalLaguerre-FDTD Method[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(02):073.[doi:10.3969/j.issn.1672-1292.2016.02.012]
点击复制

亚网格技术在二维Laguerre-FDTD方法中的应用
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
16卷
期数:
2016年02期
页码:
073
栏目:
计算机工程
出版日期:
2016-06-30

文章信息/Info

Title:
Application of Subgridding Algorithm to Two-DimensionalLaguerre-FDTD Method
作者:
刘莹莹1聂守平1刘 升2庄 伟13唐万春1
(1.南京师范大学物理科学与技术学院,江苏 南京 210023)(2.南京理工大学电子工程与光电技术学院,江苏 南京 210094)(3.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023)
Author(s):
Liu Yingying1Nie Shouping1Liu Sheng2Zhuang Wei13Tang Wanchun1
(1.School of Physical and Technology,Nanjing Normal University,Nanjing 210023,China)(2.School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)(3.Jiangsu Center for Collaborative Innovation in Geogr
关键词:
Laguerre-FDTD亚网格技术电磁计算
Keywords:
Laguerre-FDTDsubgridding techniqueelectromagnetic calculation
分类号:
TM15
DOI:
10.3969/j.issn.1672-1292.2016.02.012
文献标志码:
A
摘要:
提出了一种基于二维Laguerre-FDTD方法的亚网格技术,该技术是用波动方程法来处理粗细网格边界. 运用加权的Laguerre多项式作为时域基函数对波动方程中电磁场分量作基函数展开,使用伽辽金方法处理,消除方程中的时间项,经有限差分后得到无条件稳定的亚网格处理方法. 数值计算结果证明,在求解含有精细结构的电磁计算问题上,该算法具有准确性和有效性.
Abstract:
A subgridding algorithm in the two-dimensional Laguerre finite-difference time-domain(2-D Laguerre-FDTD)technique is presented in this paper. The homogeneous travelling wave equation is applied to calculate the tangential electric fields at the interface. The subgridding technique for Laguerre-FDTD method is used to deal with temporal variables analytically by choosing weighted Laguerre polynomials as basis functions and Galerkin’s method,which is an unconditional stable method. Numerical results for fine structures are presented to demonstrate the accuracy and efficiency of the proposed method.

参考文献/References:

[1] NAMIKI T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE transaction on microwave theory and techniques,1999,47(10):2 003-2 007.
[2] ZHEN F,CHEN Z,ZHANG J. Toward the development of a three-dimensional unconditionally stable finite-difference time domain method[J]. IEEE transaction on microwave theory and techniques,2000,48(9):1 550-1 558.
[3] SUN G,TRUEMAN C W. Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell’s equations[J]. Electronics letters,2003,39(7):595-597.
[4] ZHENG F,CHEN Z. Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method[J]. IEEE transaction on microwave theory and techniques,2001,49(5):1 006-1 009.
[5] PEREDA J,GARCIA O,VEGAS A,et al. Numerical dispersion and stability analysis of the FDTD technique in lossy dielectrics[J]. IEEE microwave and guided wave letters,1998,8(7):245-247.
[6] CHUNG Y S,SARKAR T K,JUNG B H,et al. An unconditionally stable scheme for the finite-difference time-domain method[J]. IEEE transactions on microwave theory & techniques,2003,51(3):697-704.
[7] HE G Q,SHAO W,WANG X H,et al. An efficient domain decomposition laguerre-FDTD method for two-dimensional scattering problems[J]. IEEE transactions on antennas & propagation,2013,61(5):2 639-2 645.
[8] 葛德彪,阎玉波. 电磁波时域有限差分方法[M]. 3版. 西安:西安电子科技大学出版社,2011:29-32.
GE D B,YAN Y B. The electromagnetic time domain finite difference method[M]. 3rd. Xi’an:Xi’an Electronic and Science University of Publishing House,2005. (in Chinese)
[9] 董永绵,柴玫,葛德彪,等. 二维FDTD亚网格技术[J]. 运城高专学报,2000,18(6):7-9.
DONG Y M,CAI M,GE D B. Two-dimensional subgridding algorithm in FDTD method[J]. Journal of Yuncheng advanced training college,2000,18(6):7-9. (in Chinese)
[10] ZIVANOVIC S S,YEE K S,MEI K K. A subgridding method for the time-domain finite-difference method to solve Maxwell’s equations[J]. IEEE transactions on microwave theory & techniques,1991,39(3):471-479.
[11] PRESCOTT D T,SHULEY N V. A method for incorporating different sized cells into the finite-difference time-domain analysis technique[J]. Microwave & guided wave letters IEEE,1992,2(11):434-436.
[12] 祝懿. 孔缝耦合与三维亚网格技术研究[D]. 成都:西南交通大学,2005.
ZHU Y. The study on slot coupling and three-dimensional subgridding method[D]. Chengdu:Southwest Jiaotong University,2005. (in Chinese)
[13] 谢姣. 时域有限差分方法亚网格技术的研究[D]. 南京:南京航空航天大学,2010.
XIE J. Research on subgrid techonology for FDTD[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2010. (in Chinese)
[14] 李政. 基于时域有限差分方法的亚网格技术研究与应用[D]. 南京:南京邮电大学,2014.
ZHENG L. Research and application of the subgrid technology based on FDTD method[D]. Nanjing:Nanjing University of Posts and Telecommunications,2014. (in Chinese)
[15] DIAMANTI N,GIANNOPOULOS A. Implementation of ADI-FDTD subgrids in ground penetrating radar FDTD models[J]. Journal of applied geophysics,2009,67(4):309-317.
[16] YANG S,YU Y,CHEN Z,et al. A subgridding scheme using hybrid one-step leapfrog ADI-FDTD and FDTD methods[C]. Montreal:IEEE,2012.
[17] 耿瑄,徐金平. R-FDTD与亚网格相结合技术及其应用[J]. 东南大学学报(自然科学版),2004,34(2):161-165.
GENG X,XU J P. Reduced finite-difference time-domain method with subgridding and its application[J]. Journal of southeast university(natural science edition),2004,34(2):161-165. (in Chinese)
[18] SHAO W,WANG B Z,LIU X F. Second-order absorbing boundary conditions for marching-on-in-order scheme[J]. IEEE microwave & wireless components letters,2006,16(5):308-310.
[19] CAI Z,CHEN B,LIU Y,et al. Complex frequency shifted(CFS)PML for the WLP-FDTD method[J]. Digital printing,2011:787-790.
[20] CHEVALIER M W,LUEBBERS R J. FDTD local grid with material traverse[J]. IEEE transactions on antennas & propagation,1997,45(3):411-421.
[21] YU W,MITTRA R. A new subgridding method for the finite-difference time-domain(FDTD)algorithm[J]. Microwave & optical technology letters,1999,21(5):330-333.
[22] DIAMANTI N,GIANNOPOULOS A. Employing ADI-FDTD subgrids for GPR numerical modelling and their application to study ring separation in brick masonry arch bridges[J]. Near surface geophysics,2011,9(3):245-256.

备注/Memo

备注/Memo:
收稿日期:2016-04-22. 
基金项目:江苏省高校自然科学研究面上项目(15KJB510017)、国家自然科学基金资助项目(61571232)、江苏高校优势学科建设工程资助项目. 
通讯联系人:聂守平,教授,研究方向:数值计算、光信息处理等. E-mail:nieshouping@njnu.edu.cn
更新日期/Last Update: 2016-06-30