[1]王 雷,蔡劲草,李 明.基于正交试验的遗传算法参数优化[J].南京师范大学学报(工程技术版),2016,16(02):081.[doi:10.3969/j.issn.1672-1292.2016.02.013]
 Wang Lei,Cai Jingcao,Li Ming.Parameter Optimization of Genetic AlgorithmBased on Orthogonal Experiment[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(02):081.[doi:10.3969/j.issn.1672-1292.2016.02.013]
点击复制

基于正交试验的遗传算法参数优化
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
16卷
期数:
2016年02期
页码:
081
栏目:
计算机工程
出版日期:
2016-06-30

文章信息/Info

Title:
Parameter Optimization of Genetic AlgorithmBased on Orthogonal Experiment
作者:
王 雷蔡劲草李 明
安徽工程大学机械与汽车工程学院,安徽 芜湖 241000
Author(s):
Wang LeiCai JingcaoLi Ming
School of Mechanical and Automotive Engineering,Anhui Polytechnic University,Wuhu 241000,China
关键词:
遗传算法参数优化正交试验
Keywords:
genetic algorithmparameter optimizationorthogonal experiment
分类号:
TP18
DOI:
10.3969/j.issn.1672-1292.2016.02.013
文献标志码:
A
摘要:
基本遗传算法求解优化问题的过程中存在着收敛缓慢、早熟现象以及求解的质量不高等问题. 为了解决上述存在的问题,提高遗传算法的求解质量,提出使用正交试验法优化遗传算法中的主要参数,即:种群规模N、交叉概率pc和变异概率pm. 通过使用正交试验法确定遗传参数,大大提高了算法的收敛性和求解质量. 仿真结果也表明采用正交试验法设计参数的科学性和有效性.
Abstract:
There exist slow convergence,premature problem,and the lower quality of the solution by using traditional genetic algorithm(GA)to deal with optimization problem. In order to solve these above-mentioned disadvantages and improve the solution quality,an orthogonal design method is proposed to optimize the main parameters of GA,namely population size N,crossover probability pc and mutation probability pm. As a result,the GA’s evolutional speed,global convergence and the solution quality can be improved. The simulation results indicate that this method is scientific and effective for dealing with parameter optimization problem.

参考文献/References:

[1] HOLLAND J H. Adaptation in nature and artificial systems[M]. Ann Arbor:University of Michigan Press,1975.
[2] TUNCER A,YILDIRIM M. Dynamic path planning of mobile robots with improved genetic algorithm[J]. Computers & electrical engineering,2012,38(6):1 564-1 572.
[3] RAJA R,DUTTA A,VENKATESH K S. New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover[J]. Robotics & autonomous systems,2015,72(C):295-306.
[4] IMEN D,KINZA N M,ASSIA L. A new genetic algorithm for flexible job-shop scheduling problems[J]. Journal of mechanical science and technology,2015,29(3):1 273-1 281.
[5] ISHIKAWA S,KUBOTA R,HORIO K. Effective hierarchical optimization by a hierarchical multi-space competitive genetic algorithm for the flexible job-shop scheduling problem[J]. Expert systems with applications,2015,42(24):9 434-9 440.
[6] KURDI M. An effective new island model genetic algorithm for job shop scheduling problem[J]. Computers & operations research,2016,67:132-142.
[7] CHEN J C,WU C C,CHEN C W,et al. Flexible job shop scheduling with parallel machines using Genetic Algorithm and Grouping Genetic Algorithm[J]. Expert systems with applications,2012,39(11):10 016-10 021.
[8] PAUL P V,MOGANARANGAN N,KUMAR S S,et al. Performance analyses over population seeding techniques of the permutation-coded genetic algorithm:an empirical study based on traveling salesman problems[J]. Applied soft computing,2015,32(C):383-402.
[9] 杨玉,李慧,戴红伟. 改进量子交叉遗传算法在TSP问题中的应用[J]. 南京师范大学学报(工程技术版),2012,12(9):43-48.
YANG Y,LI H,DAI H W. Improved quantum crossover based GA and its application to traveling salesman problem[J]. Journal of Nanjing normal university(engineering and technology edition),2012,12(9):43-48. (in Chinese)

相似文献/References:

[1]杨玉,李慧,戴红伟,等.改进量子交叉遗传算法在TSP问题中的应用[J].南京师范大学学报(工程技术版),2012,12(03):043.
 Yang Yu,Li Hui,Dai Hongwei.Improved Quantum Crossover Based GA and Its Application to Traveling Salesman Problem[J].Journal of Nanjing Normal University(Engineering and Technology),2012,12(02):043.
[2]张金龙,赵芙生.基于遗传算法的三维重构图像阈值分割[J].南京师范大学学报(工程技术版),2005,05(01):005.
 ZHANG Jinlong,ZHAO Fusheng.Image Threshold Segmentation of 3D Reconstruction Based on Genetic Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2005,05(02):005.
[3]刘清.多点正交交叉的遗传算法研究[J].南京师范大学学报(工程技术版),2005,05(02):042.
 LIU Qing.Research on Genetic Algorithm with Multi-Point Orthogonal Crossover Operation[J].Journal of Nanjing Normal University(Engineering and Technology),2005,05(02):042.
[4]李宇中,刘红星,张 胜.猴王遗传算法的改进[J].南京师范大学学报(工程技术版),2004,04(03):053.
 LI Yuzhong,LIU Hongxing,ZHANG Shen.Improving Monkey-King Genetic Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2004,04(02):053.
[5]杨继全,徐路钊,李 成,等.基于FDM工艺的零件成型质量工艺参数研究[J].南京师范大学学报(工程技术版),2013,13(02):001.
 Yang Jiquan,Xu Luzhao,Li Cheng,et al.Research of Process Parameters Optimization of Molding Quality Based on FDM[J].Journal of Nanjing Normal University(Engineering and Technology),2013,13(02):001.
[6]黄宏运,吴礼斌,李诗争.GA优化的SVM在量化择时中的应用[J].南京师范大学学报(工程技术版),2017,17(01):072.[doi:10.3969/j.issn.1672-1292.2017.01.011]
 Huang Hongyun,Wu Libin,Li Shizheng.Application of SVM Optimized by Genetic Algorithmin Quantization Timing Selection[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(02):072.[doi:10.3969/j.issn.1672-1292.2017.01.011]
[7]赵世田,付莹莹,曾 勇,等.基于非线性自适应度函数的遗传算法求取自由曲面最大主曲率研究[J].南京师范大学学报(工程技术版),2018,18(03):019.[doi:10.3969/j.issn.1672-1292.2018.03.003]
 Zhao Shitian,Fu Yingying,Zeng Yong,et al.Research in Calculation of Principal Curvature of Free-formSurface Based on Non-linear Automatic FitnessFunction of Genetic Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(02):019.[doi:10.3969/j.issn.1672-1292.2018.03.003]
[8]陈 超,陈振中.基于遗传算法的综合布线路径布局研究[J].南京师范大学学报(工程技术版),2020,20(04):051.[doi:10.3969/j.issn.1672-1292.2020.04.008]
 Chen Chao,Chen Zhenzhong.Research on Route Planning of Generic CablingBased on Genetic Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2020,20(02):051.[doi:10.3969/j.issn.1672-1292.2020.04.008]
[9]余凌浩,陆铁文,李 晨,等.基于子带谱熵法和PSO-GA-SVM的汽车鸣笛识别[J].南京师范大学学报(工程技术版),2021,21(02):027.[doi:10.3969/j.issn.1672-1292.2021.02.005]
 Yu Linghao,Lu Tiewen,Li Chen,et al.Car Whistle Recognition Based on Sub-Band SpectralEntropy Method and PSO-GA-SVM[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(02):027.[doi:10.3969/j.issn.1672-1292.2021.02.005]
[10]汤云峰,赵 静,谢 非,等.基于改进遗传算法的机器人路径规划方法[J].南京师范大学学报(工程技术版),2021,21(03):049.[doi:10.3969/j.issn.1672-1292.2021.03.007]
 Tang Yunfeng,Zhao Jing,Xie Fei,et al.Robot Path Planning Method Based on Improved Genetic Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(02):049.[doi:10.3969/j.issn.1672-1292.2021.03.007]

备注/Memo

备注/Memo:
收稿日期:2016-01-10. 
基金项目:国家自然科学基金(51305001)、安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016125)、先进数控与伺服驱动安徽省重点实验室开放课题(xjsk003). 
通讯联系人:王雷,博士,副教授,研究方向:智能优化算法及其在制造系统中的应用. E-mail:wangdalei2000@126.com
更新日期/Last Update: 2016-06-30