[1]李 蒙,宋春雨,谷静平,等.三维打印中的底层多边形优化[J].南京师范大学学报(工程技术版),2016,16(03):029.[doi:10.3969/j.issn.1672-1292.2016.03.005]
 Li Meng,Song Chunyu,Gu Jingping,et al.Underlying Polygon Optimization in Three Dimensional Printing[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(03):029.[doi:10.3969/j.issn.1672-1292.2016.03.005]
点击复制

三维打印中的底层多边形优化
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
16卷
期数:
2016年03期
页码:
029
栏目:
计算机工程
出版日期:
2016-09-30

文章信息/Info

Title:
Underlying Polygon Optimization in Three Dimensional Printing
文章编号:
1672-1292(2016)03-0029-07
作者:
李 蒙宋春雨谷静平王 琼刘 清
南京师范大学计算机科学与技术学院,江苏 南京 210023
Author(s):
Li MengSong ChunyuGu JingpingWang QiongLiu Qing
School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China
关键词:
三维打印平滑多边形简化样条化离散化
Keywords:
three dimension printingsmooth operationpolygon simplificationhermrite curve and B-splinediscrete
分类号:
TP274
DOI:
10.3969/j.issn.1672-1292.2016.03.005
文献标志码:
A
摘要:
三维打印过程中,底层多边形模型存在着数据点冗余、形状粗糙等问题,造成模型成型效率低,表面模型不光滑,急需要对底层多边形进行优化. 现有的多边形优化算法没有考虑到在三维打印过程从多边形转换为相应的加工指令及加工机构的平滑运行等问题. 为此,本文提出一种新的底层多边形优化算法,该算法利用基于面积最小原则的多边形简化算法来减少多边形顶点数,再通过Hermrite曲线和B样条对多边形进行样条化处理,使多边形边界变得光滑,并对样条化后的多边形顶点进行均匀离散化,使优化后的底层多边形更便于机械指令集的操作. 实验结果证明该算法可以提高底层多边形的质量并满足三维打印的工程要求.
Abstract:
The polygon which is used in the underlying digital model in?the?field?of Three Dimension Printing has many problems,such as data redundancy and rough shape. These problems lead to the inefficiency of the product,and the surface model is not smooth. The existing optimization algorithm does not consider the problem of processing instructions and smooth operation. To solve these problems,this paper presents a new polygon optimization algorithm,by using polygon simplification algorithm based on the rule of minimum area to reduce the number of vertices of polygons,and spline polygon based on Hermrite curve and B-spline to make polygon boundary becomes smooth. Then this algorithm can also discrete polygon vertices,make it easier to process. Experimental results show that this algorithm can improve the quality of underlying polygons and satisfy engineering requirements.

参考文献/References:

[1] JACOBS P F. Rapid prototyping&manufacturing:fundamentals of stereolithography[M]. Dearborn,Nichigan:Society of manufacturing engineers SME-CASA,1992:1-23.
[2] 韩霞,杨恩源. 快速成型技术与应用[M]. 北京:机械工业出版社,2012.
HAN X,YANG E Y. The technology and application of rapid prototyping[M]. Beijing:China Machine Press,2012. (in Chinese)
[3] WOHLERS T T,CAFFREY T,WOHLERSS I. Wohlers report 2013:additive manufacturing and 3D printing state of the industry:annual worldwide progress report[M]. Fort Collins,Colorado:Wohlers Associates,2013.
[4] 周伟民,闵国全,李小丽. 3D打印医学[J]. 组织工程与重建外科杂志,2014(1):1-3.
ZHOU W M,MIN G Q,LI X L. 3D printing in medicine[J]. Journal of tissue engineering and reconstructive surgery,2014(1):1-3. (in Chinese)
[5] 李娜,程继红,杨继全. 3DP分层切片中基于点云射线投影的NURBS曲面切片算法[J]. 机械科学与技术,2015(2):242-246.
LI N,CHENG J H,YANG J Q. Research on ray-NURBS slicing method directly from point cloud for 3DP[J]. Mechanical science and technology for aerospace engineering,2015(2):242-246. (in Chinese)
[6] CIGNONI P,MONTANI C,SCOPLGNO R. A comparison of mesh simplification algorithms[J]. Computers and graphics,1998,22(1):37-54.
[7] GOTSMAN C,GUMHOLD S,Kobbelt L. Simplification and compression of 3D meshes[M]//ISKE A,QUAK E,FLOATER M. Tutorials on multiresolution in geometric modelling. Berlin Heidelberg:Springer,2002:319-361.
[8] ERIKSON C. Polygonal simplification:an overview,TR96-016[R]. Chapel Hill:University of North Carolina,1996.
[9] LUEBKE D. A developer’s survey of polygonal simplification algorithms[J]. IEEE computer graphics and applications,2001,21(3):24-35.
[10] 郭力真,吴恩华. 多边形模型简化算法综述[J]. 计算机应用研究,2005(8):20-23,42.
GUO L Z,WU E H. Survey of polygonal model simplification algorithms[J]. Application research of computers,2005(8):20-23,42. (in Chinese)
[11] 刘亚姝,严寒冰,范友贵. 多边形简化算法及比较[J]. 计算机工程,2009,23:227-228.
LIU Y S,YAN H B,FAN Y G. Polygon simplification algorithms and comparison[J]. Computer engineering,2009,23:227-228. (in Chinese)
[12] HOPPE H,DEROSET,DUCHAMPT,et al. Mesh optimization[J]. Computer graphics,1993,27(1):19-26.
[13] 张弘,兰孝奇. 一种基于边折叠的改进三角网格简化方法[J]. 工程勘察,2014(10):48-51.
ZHANG H,LAN X Q. An improved triangle mesh simplification based on edge collapse[J]. Geotechnical investigation & surveying,2014(10):48-51. (in Chinese)
[14] GARLAND M,HECKBERT P S. Surface simplification using quadric error metrics[C]//Proceedings of SIG G R A PH 97,International Conference on Computer Graphics and Interactive Techniques 1997. New York,USA:ACM Press,1997:209-216.
[15] GARLAND M,ZHOU Y. Quadric-based simplification in any dimension[J]. ACM transaction on graphics,2005,24(2):209-239.
[16] 李军成,谢淳,杨炼. 三次Hermite参数曲线与曲面的扩展[J]. 计算机工程与科学,2013(1):113-118.
LI J C,XIE C,YANG L. Extensions of cubic hermite parametric curve and surface[J]. Computer engineering & science,2013(1):113-118. (in Chinese)
[17] 车丹. B样条曲线在汽车CAD软件中的应用[J]. 汽车零部件,2013(1):60-64.
CHE D. Application of B-spline gurve in the automobile CAD software[J]. Automobile parts,2003(1):60-64. (in Chinese)

相似文献/References:

[1]刘 训,杨建飞,邱 鑫,等.基于数字微喷的电路板高精度封装方法研究[J].南京师范大学学报(工程技术版),2018,18(02):036.[doi:10.3969/j.issn.1672-1292.2018.02.005]
 Liu Xun,Yang Jianfei,Qiu Xin,et al.Research on the Method of Circuit Board PackagingBased on Digital Micro Injection[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(03):036.[doi:10.3969/j.issn.1672-1292.2018.02.005]
[2]朱小刚,刘正武,乔凤斌,等.基于同步改性浸渍的碳纤维增强树脂复合材料三维打印工艺研究[J].南京师范大学学报(工程技术版),2019,19(01):045.[doi:10.3969/j.issn.1672-1292.2019.01.006]
 Zhu Xiaogang,Liu Zhengwu,Qiao Fengbin,et al.3D Printing of Carbon Fiber Reinforced Resin CompositesBased on Fiber Synchronously Modified Impregnation[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(03):045.[doi:10.3969/j.issn.1672-1292.2019.01.006]

备注/Memo

备注/Memo:
收稿日期:2016-06-30. 
通讯联系人:刘清,博士,教授,研究方向:人工智能与计算机检测技术. E-mail:njnulq@163.com
更新日期/Last Update: 2016-09-30