[1]林燕平,窦万峰.基于ARIMA模型的城市公共自行车需求量短期预测方法研究[J].南京师范大学学报(工程技术版),2016,16(03):036.[doi:10.3969/j.issn.1672-1292.2016.03.006]
Lin Yanping,Dou Wanfeng.Research on Short-Term Prediction Method of Demand Numberin Urban Public Bicycle Based on the ARIMA Model[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(03):036.[doi:10.3969/j.issn.1672-1292.2016.03.006]
点击复制
基于ARIMA模型的城市公共自行车需求量短期预测方法研究
南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
16卷
- 期数:
-
2016年03期
- 页码:
-
036
- 栏目:
-
计算机工程
- 出版日期:
-
2016-09-30
文章信息/Info
- Title:
-
Research on Short-Term Prediction Method of Demand Numberin Urban Public Bicycle Based on the ARIMA Model
- 文章编号:
-
1672-1292(2016)03-0036-05
- 作者:
-
林燕平; 窦万峰
-
南京师范大学计算机科学与技术学院,江苏 南京 210023
- Author(s):
-
Lin Yanping; Dou Wanfeng
-
School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China
-
- 关键词:
-
公共自行车; ARIMA模型; 需求量; 短期预测
- Keywords:
-
public bicycle; ARIMA model; demand number; short-term prediction
- 分类号:
-
U491.1
- DOI:
-
10.3969/j.issn.1672-1292.2016.03.006
- 文献标志码:
-
A
- 摘要:
-
预测在城市公共自行车的研究中占重要地位,对站点未来需求量进行分析和预测,可为管理者提前分配自行车和用户合理制定出行方案提供依据. 本文采用自回归求积移动平均(ARIMA)模型,对公共自行车高峰时段的需求量时间序列进行拟合和预测,并与基线法(Baseline)预测误差比较,结果显示对于不同站点类型的预测,此模型的预测值与实际值的平均相对误差均低于Baseline预测方法. ARIMA模型的预测精度相对较高,且预测结果可信,可为城市公共自行车管理和使用提供预测的理论与方法.
- Abstract:
-
Prediction occupies an important position in study of urban public bicycle. Analyzing and predicting the demand numbers at every station in future can provide a basis,which managers allocate bicycles and the users make travel plan in advance. It is necessary to use the Autoregressive Integrated Moving Average(ARIMA)model,which models the demand number time series of public bicycle during peak hours of the week. Comparing with prediction error of the Baseline method,the results show that the average relative error of the value of the prediction and the actual are both lower than the Baseline prediction method for different stations. The prediction precision of the ARIMA model is relatively high,and the prediction result is credible. It provides theory and method of the prediction for management and use of the urban public bicycle.
参考文献/References:
[1] 姚遥,周扬军. 杭州市公共自行车系统规划[J]. 城市交通,2009,7(4):30 -38.YAO Y,ZHOU Y J. Bike-sharing planning system in Hangzhou[J]. Urban transport of China,2009,7(4):30-38. (in Chinese)
[2] 曹静,宫建,杨孝宽. 解决北京市潮汐性交通拥堵的措施研究[J]. 武汉理工大学学报(交通科学与工程版),2009,33(6):1 116-1 119.
CAO J,GONG J,YANG X K. Analysis of resolving reversible traffic congestion in Beijing[J]. Journal of Wuhan university of technology(transportation science & engineering edition),2009,33(6):1 116-1 119. (in Chinese)
[3] 徐叶冉子,沈瑾. 基于圆分布法和时间序列模型的公共自行车需求量分析[J]. 工业工程,2014,17(2):54 -63.
XU Y R Z,SHEN J. Demand analysis of public bicycle system based on circular distribution method and time series model[J]. Industrial engineering journal,2014,17(2):54-63. (in Chinese)
[4] OLIVER O B,JAMES C,MICHAEL B. Mining bicycle sharing data for generating insights into sustainable transport systems[J]. Journal of transport geography,2014,34:262-273.
[5] C ME E,OUKHELLOU L. Model-based count series clustering for bike sharing system usage mining,a case study with the V’lib’s system of Paris[J]. ACM transactions on intelligent systems and technology,2014,5(3):1-21.
[6] ADVAIT S,NEAL L,CECILIA M. Comparing cities’ cycling patterns using online shared bicycle maps[J]. Transportation,2015,42:541-559.
[7] BOX G E P,JENKINS G M. Time series analysis:forecasting and control[M]. San Francisco:Holden Day,1976.
[8] JONATHAN C,TIEBEI L,DAVID R,et al. Spatio-temporal patterns of a public bicycle sharing program:the effect of weather and calendar events[J]. Journal of transport geography,2014,41:292-305.
备注/Memo
- 备注/Memo:
-
收稿日期:2016-05-16.
基金项目:国家自然科学基金(41171298).
通讯联系人:窦万峰,教授,研究方向:公共自行车项目. E-mail:douwanfeng@njnu.edu.cn
更新日期/Last Update:
2016-09-30