[1]鲍文燕,张银娟,李 晨,等.云数据中心面向实时任务的节能调度算法[J].南京师范大学学报(工程技术版),2016,16(03):081.[doi:10.3969/j.issn.1672-1292.2016.03.013]
Bao Wenyan,Zhang Yinjuan,Li Chen,et al.Energy-Efficient Scheduling Algorithm for Real-TimeTasks in Cloud Data Center[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(03):081.[doi:10.3969/j.issn.1672-1292.2016.03.013]
点击复制
云数据中心面向实时任务的节能调度算法
南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
16卷
- 期数:
-
2016年03期
- 页码:
-
081
- 栏目:
-
计算机工程
- 出版日期:
-
2016-09-30
文章信息/Info
- Title:
-
Energy-Efficient Scheduling Algorithm for Real-TimeTasks in Cloud Data Center
- 文章编号:
-
1672-1292(2016)03-0081-07
- 作者:
-
鲍文燕; 张银娟; 李 晨; 李 云
-
扬州大学信息工程学院,江苏 扬州 225127
- Author(s):
-
Bao Wenyan; Zhang Yinjuan; Li Chen; Li Yun
-
College of Information Engineering,Yangzhou University,Yangzhou 225127,China
-
- 关键词:
-
云数据中心; 实时任务; 任务松弛时间; 节能调度
- Keywords:
-
cloud data center; real-time tasks; slack time of tasks; energy-efficient scheduling
- 分类号:
-
TP393
- DOI:
-
10.3969/j.issn.1672-1292.2016.03.013
- 文献标志码:
-
A
- 摘要:
-
针对云计算环境下的独立实时任务的节能调度问题进行了研究,设计了一种基于松弛时间的任务调度算法,该算法由实时任务的分配、虚拟机资源的动态扩展以及虚拟机的动态整合3个部分组成,通过计算任务的松弛时间保证任务在截止期限内完成,保证任务的时效性. 同时提出了一种基于多阈值的虚拟机整合策略,以平衡系统负载并降低系统完成任务集合的能耗. 实验表明,与其他算法相比,该算法在保证了任务能够按时完成的基础上,有效降低了系统的整体能耗.
- Abstract:
-
In this paper,we study the problem of energy-efficient scheduling for real-time tasks. A task scheduling algorithm based on the slack time of tasks is designed. Three components of the algorithm are the distribution of real-time tasks,dynamically expanding virtual machine resource and integration of virtual machine resource. By computing the slack time of tasks,tasks can be completed within the deadline to ensure the timeliness of the task. With a multi-threshold-based virtual machine integration strategy,the system load is balanced and energy consumption of the system to complete the task set is reduced. Experiments show that,comparing with two other scheduling algorithms,the algorithm in this paper ensures that tasks can be completed on time,and energy consumption of the system can be efficiently reduced.
参考文献/References:
[1] 巫晨云. 数据中心能效影响因素及评估模型浅析[J]. 电信工程技术与标准化,2014(1):46-49.
WU C Y. A brief analysis of the factors and evaluation models of data center energy efficiency[J]. Telecom engineering technics and standardization,2014(1):46-49. (in Chinese)
[2] 赵彬,王淖,王高才. 云计算环境下的节能任务调度策略的随机Petri网分析[J]. 计算机科学,2015,42(8):112-117.
ZHAO B,WANG N,WANG G C. Analysis on energy-saving task scheduling strategy based on stochastic Petri net for cloud computing.[J]. Computer science,2015,42(8):112-117. (in Chinese)
[3] 谭一鸣,曾国荪,王伟. 随机任务在云计算平台中能耗的优化管理方法[J]. 软件学报,2012,23(2):266-278.
TAN Y M,ZENG G S,WANG W. Policy of energy optimal management for cloud computing platform with stochastic tasks[J]. Journal of software,2012,23(2):266-278. (in Chinese)
[4] 何丽,饶俊,赵富强. 一种基于能耗优化的云计算系统任务调度方法[J]. 计算机工程与应用,2013,49(20):19-22.
HE L,RAO J,ZHAO F Q. Task scheduling method based on energy optimization in cloud computing system[J]. Computer engineering and applications,2013,49(20):19-22. (in Chinese)
[5] FAN X,WEBER W D,BARROSO L A. Power provisioning for a warehouse-sized computer[J]. ACM SIGARCH computer architecture news,2007,35(2):13-23.
[6] LI J,MING Z,QIU M,et al. Resource allocation robustness in multi-core embedded systems with inaccurate information[J]. Journal of systems architecture,2011,57(9):840-849.
[7] MUTHUCUMARU M,SHOUKAT A,HOWARD H S,et al. Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems[C]// Proceeding of the 8th Heterogeneous Computing Workshop(HCW’98),1999,4(3):1-15.
[8] KUO W H,YANG D L. Minimizing the total completion time in a single-machine scheduling problem with a time-dependent learning effect[J]. European journal of operational research,2006,174(2):1 184-1 190.
备注/Memo
- 备注/Memo:
-
收稿日期:2016-07-17.
基金项目:江苏省自然科学基金(BK20161338)、江苏省“六大人才高峰”高层次人才项目(2012-WLW-024)、江苏省产学研联合创新资金(前瞻性联合研究)项目(BY2013063-10)、扬州大学研究生创新项目(CXLX_1415)、扬州市“绿扬金凤计划”创业创新领军人才项目(2013-50).
通讯联系人:鲍文燕,工程师,研究方向:计算机应用技术. E-mail:wybao@yzu.edu.cn
更新日期/Last Update:
2016-09-30