[1]王刻奇,杨 智,许清媛.膈肌肌电信号中心电干扰去除技术的一种方法[J].南京师范大学学报(工程技术版),2016,16(04):022.[doi:10.3969/j.issn.1672-1292.2016.04.004]
 Wang Keqi,Yang Zhi,Xu Qingyuan.A Method to Remove ECG Disturb in EMGdi Signal[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(04):022.[doi:10.3969/j.issn.1672-1292.2016.04.004]
点击复制

膈肌肌电信号中心电干扰去除技术的一种方法
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
16卷
期数:
2016年04期
页码:
022
栏目:
电气与电子工程
出版日期:
2016-12-31

文章信息/Info

Title:
A Method to Remove ECG Disturb in EMGdi Signal
文章编号:
1672-1292(2016)04-0022-06
作者:
王刻奇1杨 智2许清媛1
(1.中山大学南方学院,广东 广州 510970)(2.中山大学电子与信息工程学院,广东 广州 510006)
Author(s):
Wang Keqi1Yang Zhi2Xu Qingyuan1
(1.Nanfang College,Sun Yat-sen University,Guangzhou 510970,China)(2.School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou 510006,China)
关键词:
膈肌肌电信号心电信号小波变换自适应滤波
Keywords:
EMGdiECGwavelet transformself-adaptive filtering
分类号:
TP24
DOI:
10.3969/j.issn.1672-1292.2016.04.004
文献标志码:
A
摘要:
本文基于小波信号分解与重建理论和自适应滤波技术相结合的方法,以去除膈肌肌电信号中的心电干扰. 首先,采用小波分解把肌电信号中包含心电干扰的低频段分离出来,这部分信号经过自适应滤波处理后压低膈肌肌电信号,突出心电信号,然后从肌电信号中减去通过自适应滤波得到的心电噪声,再与处理后的细节进行小波的信号重建,得到心电干扰较少的EMGdi信号. 通过对真实的临床医学数据处理,并与常用的高通滤波方法作比较,结果表明,本文所提方法的输出信号的信噪比明显提高,对比处理前后信号的功率谱发现处理后的信号的频谱明显向高频移动,表明该方法取得了较好的去噪效果.
Abstract:
In order to remove electrocardiograph(ECG)interference in electromyography of diaphragm(EMGdi)signal,a cancellation technique with a combination of wavelet decomposition and reconstruction and adaptive filtering is presented in this paper. Firstly,the low frequency components of EMGdi signal containing ECG are separated out by wavelet decomposition. Secondly,the low frequency components obtained are filtered by the adaptive filter in order to lower the EMGdi and highlight the ECG. Then the ECG noise obtained by filtering is removed from the EMGdi signal. Finally,the EMGdi signal with less ECG interference is obtained by wavelet reconstruction. By comparing the results of real clinical signal with those of simple high-pass filtering,it shows that Signal-to-Noise Ratio and power spectrum had distinctly improved.

参考文献/References:

[1] JOLLY C J,LUO Y M,STEIER J,et al. Neural respiratory drive in healthy subjects and in COPD[J]. European respiratory,2009,33:289-297.
[2]BELLEMARE F,GRASSINO A. Evaluation of human diaphragm fatigue[J]. Joural of applied physiology:respirat environ & exercise physiol,1982,53(5):1 196-1 206.
[3]BECK J,SINDERBY C,LINDSTROM L,et al. Diaphragm interference pattern EMG and compound muscle action potentials:effects of chest wall configuration[J]. Joural of applied physiology,1997,82(2):520-530.
[4]UNGUREANU M,KROWORSCH B,WOLF W. Diaphragmatic EMG monitoring:some aspects on specific signal processing requirements[J]. Recent research developments in biomedical engineering,2002,1:49-66.
[5]YUDONG Z,JIQUAN Y,JIANFEI Y,et al. A novel compressed sensing method for magnetic resonance imaging:exponential wavelet iterative shrinkage-thresholding algorithm with random shift[J]. International journal of biomedical imaging,2016,10.
[6]谢燕江,杨智,詹俦军,等. 基于小波变换的膈肌肌电信号降噪方法研究[J]. 中国生物医学工程学报,2009,28(2):193-198.
XIE Y J,YANG Z,ZHAN C J,et al. A denoising method study based on wavelet transform for electromyography of diaphragm[J]. Chinese Journal of biomedical engineering,2009,28(2):193-198.(in Chinese)
[7]伍云飞,杨智,范正平等. 基于独立分量分析和小波变换的膈肌肌电信号降噪[J]. 信号处理,2010,26(10):1 532-1 538.
WU F Y,YANG Z,FAN Z P,et al. Research of denoising method for EMGdi signal based on independent component analysisand wavelet transform[J]. Signal processing,2010,26(10):1 532-1 538.(in Chinese)
[8]TSCHARNER V V,ESKOFIER B,FEDEROLF P. Removal of the electrocardiogram signal from surface EMG recordings using non-linearly scaled wavelets[J]. Journal of electrocardiogram and kinesiology,2011,21(4):683-688.
[9]Paiva J P L M,Kelencz C A,Paiva H M,et al. Adaptive wavelet EMG compression based on local optimization of filter bank[J]. Physiological measurement,2008,29(7):843-856.
[10]杨智,罗国,范正平. 小波尺度谱阈值算法在膈肌肌电降噪的应用[J]. 信号处理,2013,29(5):647-655.
YANG Z,LUO G,FAN Z P. Application of wavelet scalogram threshold algorithm in electromyography of diaphragm denoising[J]. Signal processing,2013,29(5):647-655.(in Chinese)
[11]王明时,李岳峙,诸强. 脊柱侧弯患者背部肌肉肌电图中心电干扰消除技术的一种新方法[J]. 中国生物医学工程学报,2003,22(4):313-320.
WANG M S,LI Y Z,ZHU Q. A new ECG cancellation technique in back muscle EMG of scoliosis[J]. Chinese Journal of biomedical engineering,2003,22(4):313-320.(in Chinese)
[12]张煜东,朱庆,陈贤卿,等. 基于模式的自制小波在EBPSK信号检测中的应用[J]. 东南大学学报(自然科学版),2011,41(4):691-694.
ZHANG Y D,ZHU Q,CHEN X Q,et al. Pattern-based custom wavelet used for EBPSK signal detection[J]. Journal of Southeast university(Natural Science Edition),2011,41(4):691-694.(in Chinese)
[13]THAKOR N V,ZHU Y S. Application of adaptive filtering to ECG analysis:noise cancellation and arrhythmia detection[J]. IEEE Trans on biomedical engineering,1991,38(8):785-794
[14]LUO Y M,HART N,MUSTFA N,et al. Effect of diaphragm fatigue on neural respiratory drive[J]. Joural of applied physiology,2001,90(5):1 691-1 699
[15]DONOHO D L. De-noising by soft-thresholding[J]. IEEE transactions on information theory,1995,41(30):613-627.
[16]杨福生,高上凯. 生物医学信号处理[M]. 北京:高等教育出版社,1995.
YANG F S,GAO S K. Biomedical signal processing[M]. Beijing:Higher Education Press,1995.(in Chinese)
[17]SINDERBY C,BECK J,SPAHIJA J,et al. Voluntary activation of the human diaphragm in health and disease[J]. Joural of applied physiology,1998,85(6):2 146-2 158.

备注/Memo

备注/Memo:
收稿日期:2015-12-14.
通讯联系人:王刻奇,讲师,研究方向:复杂系统的先进控制. E-mail:wjwkq@126.com
更新日期/Last Update: 2016-12-31