[1]彭光娅,闵富红,黄雯迪,等.含电磁功率扰动的分数阶电力系统混沌分析与同步控制[J].南京师范大学学报(工程技术版),2017,17(01):018.[doi:10.3969/j.issn.1672-1292.2017.01.003]
 Peng Guangya,Min Fuhong,Huang Wendi,et al.Chaotic Analysis and Synchronization Control of Fractional OrderPower System with the Disturbance of Electromagnetic Power[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(01):018.[doi:10.3969/j.issn.1672-1292.2017.01.003]
点击复制

含电磁功率扰动的分数阶电力系统混沌分析与同步控制
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
17卷
期数:
2017年01期
页码:
018
栏目:
电气工程
出版日期:
2017-03-30

文章信息/Info

Title:
Chaotic Analysis and Synchronization Control of Fractional OrderPower System with the Disturbance of Electromagnetic Power
文章编号:
1672-1292(2017)01-0018-08
作者:
彭光娅闵富红黄雯迪叶彪明窦一平
南京师范大学电气与自动化工程学院,江苏 南京 210042
Author(s):
Peng GuangyaMin FuhongHuang WendiYe BiaomingDou Yiping
School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210042,China
关键词:
混沌振荡分数阶互联电力系统功角失稳同步控制
Keywords:
chaotic oscillationfractional order power systemangle instabilitysynchronization control
分类号:
TP391.9
DOI:
10.3969/j.issn.1672-1292.2017.01.003
文献标志码:
A
摘要:
混沌振荡是电力系统的固有现象,当系统运行情况变得复杂时,整数阶互联系统模型已无法满足研究要求. 本文提出了一个简单的含电磁功率扰动的分数阶互联电力系统模型,利用分岔图、李雅普诺夫指数谱、庞加莱截面等分析系统产生混沌振荡的最低阶次. 通过改变电磁功率扰动幅值和频率因子,观察到系统由倍周期分岔通往混沌直至功角失稳,并导致系统崩溃. 同时,采用双参数分析法对系统的周期运动、混沌和功角失稳详细划分与分析,由于功角稳定性被破坏前并没有明显的迹象,但会出现分岔和混沌行为,若能对混沌运动进行控制,就可以避免功角失稳对系统造成的巨大危害. 最后,设计一种符合该系统稳定性要求的非线性控制器,实现分数阶互联电力系统的同步控制,仿真结果证明了控制方法的有效性,为电力系统的安全稳定运行提供了依据.
Abstract:
Chaotic oscillation is an inherent phenomenon of nonlinear power system. However,when the operation conditions in power system become complicated,the integer-order system models have not fully met the demands of research needs. In this paper,the basic dynamic properties of the fractional-order power system are investigated with the disturbance of electromagnetic power through the bifurcation diagram,Lyapunov exponent spectrum and Poincaré section. In the case of fractional-order power system,the lowest order at which chaos exists is observed. With the disturbance amplitude of electromagnetic power and the frequency factor varying,this power system shows rich dynamic behaviors characterized as period-doubling bifurcation transferring to chaos and angle instability. Based on the double parameters mapping,the regions are divided into the domains of periodic motion,chaos and angle instability. Due to the route to chaos appearing before the angle instability,the control method which can eliminate the chaos should be designed to avoid the harm of angle instability in power system. Therefore,a nonlinear controller which meets the stability requirement is designed to realize the synchronization of the fractional-order chaotic power system. Simulation results verify the effectiveness of the proposed methods,and provide theoretical references for the secure and stable operation of power system.

参考文献/References:

[1] PRAPROST K L,LOPARO K A. A stability theory for constrained dynamic systems with applications to electric power systems[J]. American control conference,1996,2(11):1 605-1 617.
[2]赵晓伟,吕思昕,谢欢,等. 电力系统低频振荡综述[J]. 华北电力技术,2015(3):34-37.
ZHAO X W,LYU S X,XIE H,et al. A survey of power system low frequency oscillation[J]. North China electric power,2015(3):34-37.(in Chinese)
[3]杨珺,王雅光,孙秋野,等. 智能电网的失稳与混沌[J]. 东北大学学报(自然科学版),2016,37(1):6-10.
YANG J,WANG Y G,SUN Q Y,et al. Instability and chaos of smart grid[J]. Journal of Northeastern university(natural science),2016,37(1):6-10.(in Chinese)
[4]薛禹胜. 综合防御由偶然故障演化为电力灾难——北美“8·14”大停电的警示[J]. 电力系统自动化,2003,27(18):1-5.
XUE Y S. The way from a simple contingency to system-wide disaster—Lessons from the eastern interconnection blackout in 2003[J]. Automation of electric power systems,2003,27(18):1-5.(in Chinese)
[5]林伟芳,孙华东,汤涌,等. 巴西“11·10”大停电事故分析及启示[J]. 电力系统自动化,2010,34(7):1-5.
LIN W F,SUN H D,TANG Y,et al. Analysis and lessons of blackout in Brazil power grid on November 10,2009[J]. Automation of electric power systems,2010,34(7):1-5.(in Chinese)
[6]倪骏康,刘崇新,庞霞,等. 电力系统混沌振荡的等效快速终端模糊滑模控制[J]. 物理学报,2013,62(19):99-105.
NI J K,LIU C X,PANG X,et al. Fuzzy fast terminal sliding mode controller using an equivalent control for chaotic oscillation in power system[J]. Acta physica sinica,2013,62(19):99-105.(in Chinese)
[7]QIN Y H,LUO X S. Random-phase-induced chaos in power systems[J]. Chinese physics B,2010,19(5):050511.
[8]董世勇,鲍海,魏哲,等. 双机电力系统中混沌振荡阀值的计算与仿真[J]. 中国电机工程学报,2010,30(19):58-63.
DONG S Y,BAO H,WEI Z,et al. Calculations and simulations of the chaotic oscillation threshold in daul-unit systems[J]. Proceedings of the CSEE,2010,30(19):58-63.(in Chinese)
[9]MIN F H,WANG Y D,PENG G Y,et al. Bifurcations,chaos and adaptive backstepping sliding mode control of a power system with excitation limitation[J]. Aip advances,2016,6(8):p681-295.
[10]MA M L,MIN F H. Bifurcation behavior and coexisting motions in a time-delayed power system[J]. Chinese physics B,2015,24(3):78-86.
[11]王晓东,陈予恕. 一类电力系统的分岔和奇异性分析[J]. 振动与冲击,2014,33(4):1-6
WANG X D,CHEN Y S. Bifurcation and singular analysis for a class of power systems[J]. Journal of vibration and shock,2014,33(4):1-6.(in Chinese)
[12]LIU X J,HONG L. Chaos and adaptive synchronizations in fractional-order systems[J]. International journal of bifurcation and chaos,2013,23(11):43-56.
[13]高远,范健文,罗文广,等. 分数阶永磁同步电机的混沌运动及其控制研究[J]. 武汉理工大学学报,2012,34(7):134-140.
GAO Y,FAN J W,LUO W G,et al. Chaos in the fractional order permanent magnet synchronous motor and its control[J]. Journal of Wuhan university of technology,2012,34(7):134-140.(in Chinese)
[14]谭文,张敏,李志攀,等. 分数阶互联电力系统混沌振荡及其同步控制[J]. 湖南科技大学学报(自然科学版),2011,26(2):74-78.
TAN W,ZHANG M,LI Z P. Chaotic oscillation of interconnected power system and its synchronization[J]. Journal of Hunan university of science and technology(natural science edition),2011,26(2):74-78.(in Chinese)
[15]MATIGNON D. Stability results for fractional differential equations with applications to control processing[J]. Computational engineering in systerns applications,1997(2):963-968.
[16]黄雯迪,闵富红. 单一驱动多响应分数阶混沌系统的完全同步[J]. 南京师范大学学报(工程技术版),2015,15(2):1-8.
HUANG W D,MIN F H. Complete synchronization of single-drive and multiple-response fractional-order chaotic system[J]. Journal of Nanjing normal university(engineering and technology edition),2015,15(2):1-8.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2016-11-14.
基金项目:国家自然科学基金(51475246)、江苏省自然科学基金(BK20131402).
通讯联系人:闵富红,博士,副教授,研究方向:非线性电路与系统. E-mail:minfuhong@njnu.edu.cn
更新日期/Last Update: 1900-01-01