[1]吴佳炜,沈玲玲,钱 钢.融合项目聚类和时间权重的动态协同过滤算法[J].南京师范大学学报(工程技术版),2017,17(03):063.[doi:10.3969/j.issn.1672-1292.2017.03.010]
 Wu Jiawei,Shen Lingling,Qian Gang.Dynamic Collaborative Filtering Algorithm FusingItem Clustering and Time Weight[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(03):063.[doi:10.3969/j.issn.1672-1292.2017.03.010]
点击复制

融合项目聚类和时间权重的动态协同过滤算法
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
17卷
期数:
2017年03期
页码:
063
栏目:
计算机工程
出版日期:
2017-09-30

文章信息/Info

Title:
Dynamic Collaborative Filtering Algorithm FusingItem Clustering and Time Weight
文章编号:
1672-1292(2017)03-0063-07
作者:
吴佳炜1沈玲玲12钱 钢1
(1.南京师范大学计算机科学与技术学院,江苏 南京 210097)(2.南京师范大学商学院,江苏 南京 210097)
Author(s):
Wu Jiawei1Shen Lingling12Qian Gang1
(1.School of Computer Science and Technology,Nanjing Normal University,Nanjing 210097,China)(2.School of Business,Nanjing Normal University,Nanjing 210097,China)
关键词:
协同过滤推荐系统类别偏好相似度时间权重
Keywords:
collaborative filteringrecommender systemclass preferencesimilaritytime weight
分类号:
P208
DOI:
10.3969/j.issn.1672-1292.2017.03.010
文献标志码:
A
摘要:
传统基于项目的协同过滤算法离线计算项目间的相似度,提高了向用户推荐的速度,但极大的数据稀疏度影响了推荐质量,且该算法也忽略了用户兴趣随时间变化这一现象. 针对上述问题,提出了一种融合项目聚类和时间权重的动态协同过滤算法,根据用户偏好对项目进行聚类,找出类别偏好相似的候选邻居,再在候选邻居中搜寻最近邻,排除与目标项目共同评分较少的项目干扰,提高了搜寻相似项目的准确性. 同时,引入时间权重来反映用户兴趣随时间的变化,从整体上提高推荐质量. 在MovieLens数据集上进行实验,实验结果表明,本文所提出算法的推荐质量较传统的协同过滤算法有显著提高.
Abstract:
The traditional item-based collaborative filtering algorithm calculates item-item similarity offline and improves the real-time performance of recommender system,but the big data sparsity problem still impacts the quality of the algorithm and it also ignores the phenomenon that users’ interests change over time. To address the issues above,this paper proposes a dynamic collaborative filtering algorithm fusing item clustering and time weight. The proposed algorithm first clusters items according to the user’s preference,then finds out candidate neighbors who are similar to the target item in class preference. Then it searches for nearest neighbors in the candidate neighbor set,which eliminates the interference of the items those have few co-ratings with the target item. At the same time,this algorithm introduces time weight to reflect the change of users’ interests over time,which improves recommendation quality from the overall. Experimental results based on MovieLens dataset show that the recommendation quality of the new algorithm is significantly improved compared with traditional item-based collaborative filtering algorithm and user-based collaborative filtering algorithm.

参考文献/References:

[1] AL-SHAMRI M Y H. Power coefficient as a similarity measure for memory-based collaborative recommender systems[J]. Expert systems with applications,2014,41(13):5 680-5 688.
[2]CHOI K,SUH Y. A new similarity function for selecting neighbors for each target item in collaborative filtering[J]. Knowledge-based systems,2013,37(1):146-153.
[3]邓爱林,朱扬勇,施伯乐. 基于项目评分预测的协同过滤推荐算法[J]. 软件学报,2003,14(9):1 621-1 628.
DENG A L,ZHU Y Y,SHI B L. A collaborative filtering recommendation algorithm based on item rating prediction[J]. Journal of software,2003,14(9):1 621-1 628.(in Chinese)
[4]罗奇,余英,赵呈领,等. 自适应推荐算法在电子超市个性化服务系统中的应用研究[J]. 通信学报,2006,27(11):183-186,192.
LUO Q,YU Y,ZHAO C L,et al. Research on personalized service system in E-supermarket by using adaptive recommendation algorithm[J]. Journal on communications,2006,27(11):183-186,192.(in Chinese)
[5]SUGANESHWARI G,IBRAHIM S P S. A survey on collaborative filtering based recommendation system[C]//Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges(ISBCC-16’). Springer International Publishing,2016.
[6]NAGARAJU S,KASHYAP M,BHATTACHRAYA M. An effective density based approach to detect complex data clusters using notion of neighborhood difference[J]. International journal of automation and computing,2017,14(1):1-11.
[7]OMAR R,HIROTAKA O,SHIGEMI K. The robustest clusters in the input-output networks:global(\hbox{CO}_2\)emission clusters[J]. Journal of economic structures,2017,6(1):3.
[8]黄典. 基于项目的协同过滤推荐算法的改进[J]. 中国科技信息,2016(1):64-66.
HUANG D. Improvement of item-based collaborative filtering recommendation algorithm[J]. China science and technology information,2016(1):64-66.(in Chinese)
[9]ZHANG Y,LIU Y. A collaborative filtering algorithm based on time period partition[C]//Third International Symposium on Intelligent Information Technology and Security Informatics. New York:IEEE Computer Society,2010:777-780.
[10]田伟,彭玉青. 基于电子商务应用的协同过滤技术改进综述[J]. 计算机工程与科学,2008,30(10):61-63,66.
TIAN W,PENG Y Q. Improvement research of the CF algorithm for E-commerce[J]. Computer engineering and science,2008,30(10):61-63,66.(in Chinese)
[11]陆诗琴. 个性化推荐技术中的互信息相似度应用研究[D]. 桂林:桂林理工大学,2015.
LU S Q. Research on the application of mutual information similarity in personalized recommendation technology[D]. Guilin:Guilin University of Technology,2015.(in Chinese)
[12]RESNICK P,IACOVOU N,SUCHAK M,et al. Group Lens:an open architecture for collaborative filtering of net news[C]//ACM Conference on Computer Supported Cooperative Work. ACM,1994:175-186.
[13]朱文奇. 推荐系统用户相似度计算方法研究[D]. 重庆:重庆大学,2014.
ZHU W Q. Research on user’s similarity calculation method[D]. Chongqing:Chongqing University,2014.(in Chinese)
[14]KIM B M,LI Q,CHANG S P. A new approach for combining content-based and collaborative filters[J]. Journal of intelligent information system,2006,27(1):79-91.
[15]YANG X,GUO Y,LIU Y. A survey of collaborative filtering based social recommender systems[J]. Computer communications,2014,41(5):1-10.
[16]梁昌勇,冷亚军,王勇胜,等. 电子商务推荐系统中群体用户推荐问题研究[J]. 中国管理科学,2013,21(3):153-158.
LIANG C Y,LENG Y J,WANG Y S,et al. Research on group recommendation in e-commerce recommender systems[J]. Chinese journal of management science,2013,21(3):153-158.(in chinese)
[17]魏强,金芝,许焱. 基于概率主题模型的物联网服务发现[J]. 软件学报,2014(8):1 640-1 658.
WEI Q,JIN Z,XU Y. Service discovery for internet of things based on probabilistic topic model[J]. Journal of software,2014(8):1 640-1 658.(in Chinese)
[18]ZHAO Z D,SHANG M S. User-based collaborative-filtering recommendation algorithms on Hadoop[C]//Third international conference on knowledge discovery and data mining. New York:IEEE Computer Society,2010:478-481.

相似文献/References:

[1]李 慧,李存华,王 霞.一种新颖的个性化视频搜索排名算法[J].南京师范大学学报(工程技术版),2008,08(04):182.
 L iH u,i L iCunhua,W ang X ia.A Novel Individualized V ideo Search Rank ing Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2008,08(03):182.
[2]贺 宇,史有群,陶 然,等.基于服装图像视觉特征的冷启动问题缓解[J].南京师范大学学报(工程技术版),2019,19(03):015.[doi:10.3969/j.issn.1672-1292.2019.03.003]
 He Yu,Shi Youqun,Tao Ran,et al.Mitigation of Cold-Start Problem Based on Visual Features of Clothing Images[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(03):015.[doi:10.3969/j.issn.1672-1292.2019.03.003]
[3]王俊淑,张国明,胡 斌.基于深度学习的推荐算法研究综述[J].南京师范大学学报(工程技术版),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]
 Wang Junshu,Zhang Guoming,Hu Bin.A Survey of Deep Learning Based Recommendation Algorithms[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(03):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]
[4]张 莉,孙晓寒,郑晓晗.基于评分子空间和信任机制的协同过滤推荐算法[J].南京师范大学学报(工程技术版),2023,23(03):027.[doi:10.3969/j.issn.1672-1292.2023.03.004]
 Zhang Li,Sun Xiaohan,Zheng Xiaohan.Collaborative Filtering Method Based on User Rating Subspace and Trust Mechanism for Recommendation System[J].Journal of Nanjing Normal University(Engineering and Technology),2023,23(03):027.[doi:10.3969/j.issn.1672-1292.2023.03.004]

备注/Memo

备注/Memo:
收稿日期:2017-02-23.
基金项目:国家自然科学基金(61503188)、江苏省自然科学基金(BK20150982).
通讯联系人:沈玲玲,博士研究生,讲师,研究方向:管理科学与工程. E-mail:llshen509@163.com
更新日期/Last Update: 2017-09-30