参考文献/References:
[1] SNELSON E,RASMUSSEN C E,GHAHRAMANI Z. Warped Gaussian process[C]//Proc of the NIPS 16. Vancouver,British Columbia,Canada,2004.
[2]NGUYEN T D,PETERS J. Incremental online sparsification for model learing in realtime robot control[J]. Neurocomputing,2011,74(11):1 859-1 867.
[3]PETELIN D,KOCIJAN J. Control system with evolving Gaussian process model[C]//Proc of IEEE Symposium Series on Computational Intelligence,2011.
[4]MUSIZZA B,PETELIN D,KOCIJAN J. Accelerated learning of Gaussian process models[C]//Proc of the 7th EUROSIM Congress on Modelling and Simulation. Praha,CZ,VCVUT,2010.
[5]SHI H X,ZHANG T Y,AN T C,et al. Enhancement of photocatalytic activity of nano-scale TiO2 particles co-doped by rare earth elements and heteropolyacids[J]. Journal of colloid and interface science,2012,380(1):121-127.
[6]DI S C,GUO Y P,Lü H W,et al. Microstructure and properties of rare earth CeO2-doped TiO2 nanostructured composite coatings through micro-arc oxidation[J]. Ceramics international,2015,41(5A):6 178-6 186.
[7]VIGNESH C B,DANIEL R R,JOHN N K. Assessment of mechanisms for enhanced performance of Yb/Er/titania photocatalysts for organic degradation:role of rare earth elements in the titania phase[J]. Applied catalysis B(environmental),2017,202:156-164.
[8]HüSNü A Y,MUHSIN ?. The effect of rare earth element doping on the microstructural evolution of sol-gel titania powders[J]. Journal of alloys and compounds,2017,695:1 336-1 353.
[9]YUAN W J,ZHU Q Y,DENG C J,et al. Effects of rare earth oxides additions on microstructure and properties of alumina-magnesia refractory castables[J]. Ceramics international,2017,43(9):6 746-6 750.
[10]AOIFE L,ANNA I,MICHAEL N. A first principles investigation of Bi2O3-modified TiO2 for visible light Activated photocatalysis:the role of TiO2 crystal form and the Bi3+ stereochemical lone pair[J]. Materials science in semiconductor processing,2014,25:59-67.
[11]LI S J,QIU H,WANG C D,et al. Highly efficient NaTaO3 for visible light photocatalysis predicted from first principles[J]. Solar energy materials and solar cells,2016,149:97-102.
[12]ZENG X Y,XIAO X Y,ZHANG W P,et al. Interfacial charge transfer and mechanisms of enhanced photocatalysis of an anatase TiO2(0 0 1)-MoS2-graphene nanocomposite:A first-principles investigation[J]. Computational materials science,2017,126:43-51.
[13]FU A M,WANG X Z,HE Y L,et al. A study on residence error of training an extreme learning machine and its application to evolutionary algorithms[J]. Neurocomputing,2014,146:75-82.
[14]ZHENG W B,FU X P,YING Y B. Spectroscopy-based food classification with extreme learning machine[J]. Chemometrics and intelligent laboratory systems,2014,139:42-47.
[15]WOUBISHET Z T,ESKO S. Machine learning for durability and service-life assessment of reinforced concrete structures:recent advances and future directions[J]. Automation in construction,2017,77:1-14.
[16]LIU Y,BI J W,FAN Z P. Multi-class sentiment classification:the experimental comparisons of feature selection and machine learning algorithms[J]. Expert systems with applications,2017,80:323-339.
[17]JOSé M M M,PABLO E M,CARLO B,et al. Prediction of the hemoglobin level in hemodialysis patients using machine learning techniques[J]. Computer methods and programs in biomedicine,2014,17(2):208-217.
[18]DI K C,LI W,YUE Z Y,et a;. A machine learning approach to crater detection from topographic data[J]. Advances in space research,2014,54(11):2 419-2 429.
[19]MA C,ZHANG H H,WANG X F. Machine learning for Big Data analytics in plants[J]. Trends in plant science,2014,19(12):798-808.
[20]TAYFUN K,CAMBAZOGLU B B,CEVDET A,et al. A machine learning approach for result caching in web search engines[J]. Information processing and management,2017,53(4):834-850.
[21]CYRIL V,GILLES N,SOTERIS K,et al. Machine learning methods for solar radiation forecasting:a review[J]. Renewable energy,2017,105:569-582.