参考文献/References:
[1] 丁明,王伟胜,王秀丽,等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报,2014,34(1):1-14.
[DING M,WANG W S,WANG X L,et al. A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE,2014,34(1):1-14.(in Chinese)
[[2]龚莺飞,鲁宗相,乔颖,等. 光伏功率预测技术[J]. 电力系统自动化,2016,40(4):140-151.
[GONG Y F,LU Z X,QIAO Y,et al. An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems,2016,40(4):140-151.(in Chinese)
[[3]许童羽,马艺铭,曹英丽,等. 基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测[J]. 电力系统保护与控制,2016,44(22):90-95.
[XU T Y,MA Y M,CAO Y L,et al. Short term forecasting of photovoltaic output power based on principal component analysis and genetic optimization of BP neural network[J]. Power system protection and control,2016,44(22):90-95.(in Chinese)
[[4]TENG X L,GAO Z H,ZHANG Y Y,et al. Key technologies and the implementation of wind,PV and storage co-generation monitoring system[J]. Journal of modern power systems & clearn energy,2014,2(2):104-113.
[[5]高相铭,杨世凤,潘三博. 基于EMD和ABC-SVM的光伏并网系统输出功率预测研究[J]. 电力系统保护与控制,2015,43(21):86-92.
[GAO X M,YANG S F,PAN S B. A forecasting model for output power of grid-connected photovoltaic generation system based on EMD and ABC-SVM[J]. Power system protection and control,2015,43(21):86-92.(in Chinese)
[[6]LORENZ E,HURKA J,HEINEMANN D,et al. Irradiance forecasting for the power prediction of grid-connected photovoltaic systems[J]. IEEE journal of selected topics in applied earth observations and remote sensing,2009,2(1):2-10.
[[7]袁晓玲,施俊华,徐杰彦. 计及天气类型指数的光伏发电短期出力预测[J]. 中国电机工程学报,2013,33(34):57-64.
[YUAN X L,SHI J H,XU J Y. Short-term power forecasting for photovoltaic generation considering weather type index[J]. Proceedings of the CSEE,2013,33(34):57-64.(in Chinese)
[[8]兰华,廖志民,赵阳. 基于ARMA模型的光伏电站出力预测[J]. 电测与仪表,2011,48(2):31-35.
[LAN H,LIAO Z M,ZHAO Y. ARMA model of the solar power station based on output prediction[J]. Electrical measurement & instrumentation,2011,48(2):31-35.(in Chinese)
[[9]叶林,陈政,赵永宁,等. 基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J]. 电力系统自动化,2015,39(16):16-22.
[YE L,CHEN Z,ZHAO Y N,et al. Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network[J]. Automation of electric power systems,2015,39(16):16-22.(in Chinese)
[[10]朱永强,田军. 最小二乘支持向量机在光伏功率预测中的应用[J]. 电网技术,2011,35(7):54-59.
[ZHU Y Q,TIAN J. Application of least square support vector machine in photovoltaic power forecasting[J]. Power system technology,2011,35(7):54-59.(in Chinese)
[[11]王新普,周想凌,邢杰,等. 一种基于改进灰色BP神经网络组合的光伏出力预测方法[J]. 电力系统保护与控制,2016,44(18):81-87.
[WANG X P,ZHOU X L,XING J,et al. A prediction method of PV output power based on the combination of improved grey back propagation neural network[J]. Power system protection and control,2016,44(18):81-87.(in Chinese)
[[12]杨锡运,刘欢,张彬,等. 基于熵权法的光伏输出功率组合预测模型[J]. 太阳能学报,2014,35(5):744-749.
[YANG X Y,LIU H,ZHANG B,et al. A combination method for photovoltaic power forecasting based on entropy weight method[J]. Acta energiae solaris sinica,2014,35(5):744-749.(in Chinese)
[[13]陈通,孙国强,卫志农,等. 基于相似日和CAPSO-SNN的光伏发电功率预测[J]. 电力自动化设备,2017,37(3):66-71.
[CHEN T,SUN G Q,WEI Z N,et al. Photovoltaic power generation forecasting based on similar day and CAPSO-SNN[J]. Electric power automation equipment,2017,37(3):66-71.(in Chinese)
[[14]杨锡运,刘玉奇,张璜,等. 含并网光伏电站的系统可靠性评估方法[J]. 高电压技术,2016,42(9):2689-2696.YANG X Y,LIU Y Q,ZHANG H,et al. Reliability evaluation method of grid connected with photovoltaic power station[J]. High voltage engineering,2016,42(9):2689-2696.(in Chinese)
[[15]陈宁,沙倩,汤奕,等. 基于交叉熵理论的风电功率组合预测方法[J]. 中国电机工程学报,2012,32(4):29-34.
[CHEN N,SHA Q,TANG Y,et al. A combination method for wind power prediction based on cross entropy theory[J]. Proceedings of the CSEE,2012,32(4):29-34.(in Chinese)
[[16]李建红,陈国平,葛鹏江,等. 基于相似日理论的光伏发电系统输出功率预测[J]. 华东电力,2012,40(1):153-157.
[LI J H,CHEN G P,GE P J,et al. Ouput power forecasting of PV generation system based on similar day theory[J]. East China electric power,2012,40(1):153-157.(in Chinese)
[[17]陈华友. 基于相关系数的优性组合预测模型研究[J]. 系统工程学报,2006,21(4):353-360.
[CHEN H Y. Research on properties of superior combined forecasting models based on correlation coefficients[J]. Journal of systems engineering,2006,21(4):353-360.(in Chinese)