[1]刘 振,刘文彪.融合蜂群行为的量子进化算法[J].南京师范大学学报(工程技术版),2018,18(02):063.[doi:10.3969/j.issn.1672-1292.2018.02.009]
 Liu Zhen,Liu Wenbiao.Bee-Behaved Colony Quantum-Inspired Evolutionary Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(02):063.[doi:10.3969/j.issn.1672-1292.2018.02.009]
点击复制

融合蜂群行为的量子进化算法
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
18卷
期数:
2018年02期
页码:
063
栏目:
计算机与信息工程
出版日期:
2018-06-30

文章信息/Info

Title:
Bee-Behaved Colony Quantum-Inspired Evolutionary Algorithm
文章编号:
1672-1292(2018)02-0063-07
作者:
刘 振刘文彪
海军航空大学岸防兵学院,山东 烟台 264001
Author(s):
Liu ZhenLiu Wenbiao
College of Coastal Defense Force,Naval Aeronautical University,Yantai 264001,China
关键词:
量子进化算法蜂群混沌变异旋转
Keywords:
quantum-inspired evolutionary algorithmbee colonychaosmutationrotation
分类号:
TP18
DOI:
10.3969/j.issn.1672-1292.2018.02.009
文献标志码:
A
摘要:
为提高量子进化算法的收敛精度和收敛速度,以人工蜂群算法为基本进化框架,提出一种融合蜂群行为的量子进化算法. 将采用相位编码的量子进化种群划分为量子开采种群、量子跟随种群以及量子侦察种群,在每个种群内模拟蜜蜂觅食行为寻优,其中量子开采种群采用混沌扰动搜索,量子跟随种群采用柯西变异操作进化. 同时对所有种群个体采用量子染色体的两步旋转更新方法,并进行自适应的动态变异操作. 利用基准测试函数进行仿真,与相关方法对比分析可知,所提出的算法在大部分的函数上都表现出较好的性能,能有效提高全局收敛性能.
Abstract:
In order to promote the convergence precision and speed of quantum-inspired evolutionary algorithm,a new bee-behaved quantum-inspired evolutionary algorithm is proposed based on the framework of ABC algorithm. The whole population can be encoded with phase and can be divided into three populations,which are named as quantum employed population,quantum onlooker population and quantum scout population. Every sub-population can work in term of bee behaviors,quantum employed population perform the chaos search and the quantum onlooker population can perform the Cauchy mutation. Every individual in the population can be rotated in two steps,and dynamic mutation operation can also act on every individual. Simulation results of benchmark functions show that the proposed algorithm performs well on most of functions and can get better convergence results.

参考文献/References:

[1] HAN K H,KIM J H.Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE trans on evolutionary computation,2002,6(6):580-593.
[2]LUCIAO R S,RICARDO T,MARLEY M V. Quantum inspired evolutionary algorithm for ordering problems[J]. Expert systems with applications,2017,67(1):71-83.
[3]LU T C,Yu G R. An adaptive population multi-objective quantum-inspired evolutionary algorithm for multi-objective 0/1 knapsack problems[J]. Information sciences,2013,243:39-56.
[4]QU Z J,LIU X H,ZHANG X W. Hamming-distance-based adaptive quantum-inspired evolutionary algorithm for network coding resources optimization[J]. The journal of China universities of posts and telecommunications,2015,22(3):92-99.
[5]KONG H P,LI N,SHEN Y Z. Adaptive double chain quantum genetic algorithm for constrained optimization problems[J]. Chinese journal of aeronautics,2015,28(1):214-228.
[6]XING H L,LIU X,JIN X,et al. A multi-granularity evolution based quantum genetic algorithm for QoS multicast routing problem in WDM networks[J]. Computer communications,2009,32(2):386-393.
[7]WANG L,LI L P.An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems[J]. Expert systems with applications,2010,37(2):1279-1285.
[8]李盼池,宋考平,杨二龙. 基于相位编码的混沌量子免疫算法[J]. 控制理论与应用,2011,28(3):375-380.
LI P C,SONG K P,YANG E L. Chaos quantum immune algorithm based on phase encoding[J]. Control theory and applications,2011,28(3):375-380.(in Chinese)
[9]JIAO L C,LI Y Y,GONG M G,et al. Quantum-inspired immune clonal algorithm for global optimization[J]. IEEE trans on system,man,cybernetics:B,cybernetics,2008,38(5):1234-1253.(in Chinese)
[10]HOSSEIN N P. A quantum-inspired gravitational search algorithm for binary encoded optimization problems[J]. Engineering applications of artificial intelligence,2015,40(1):62-75.
[11]KARABOGA D,BASTURK B.On the performance of artificial bee colony(ABC)algorithm[J]. Applied soft computing,2008,8(1):687-697.
[12]YUAN X H,WANG P T,YUAN Y B,et al. A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem[J]. Energy conversion and management,2015,100(1):1-9.
[13]PAN Q K. An effective co-evolutionary artificial bee colony algorithm for steel making-continuous casting scheduling[J]. European journal of operational research,2016,250:702-714.
[14]杨海东,鄂加强. 自适应变尺度混沌免疫优化算法及其应用[J]. 控制理论与应用,2009,26(10):1069-1074.
YANG H D,E J Q. An adaptive chaos immune optimization algorithm with mutative scale and its application[J]. Control theory and applications,2009,26(10):1069-1074.(in Chinese)
[15]BILAL A.Chaotic bee colony algorithms for global numerical optimization[J]. Expert systems with applications,2010,37(8):5682-5687.

备注/Memo

备注/Memo:
收稿日期:2018-01-26.
基金项目:国家自然科学基金(51605487)、国家自然科学基金(61174031).
通讯联系人:刘振,博士,讲师,研究方向:智能进化理论及其在先进火控中的应用. E-mail:hylz1008@126.com
更新日期/Last Update: 2018-06-30